Faculty of Biological Sciences University of South Bohemia

The requirements of the rare moss, *Hamatocaulis vernicosus* (Calliergonaceae, Musci), in the Czech Republic in relation to vegetation, water chemistry and management

Rigorózní práce

Táňa Štechová 2007 Štechová Táňa and Kučera Jan: The requirements of the rare moss, *Hamatocaulis vernicosus* (Calliergonaceae, Musci), in the Czech Republic in relation to vegetation, water chemistry and management, Biol. Conserv. (2006), doi:10.1016/j.biocon.2006.10.021.

 7 p., RNDr. Thesis, Faculty of Biological Sciences, The University of South Bohemia, České Budějovice, Czech Republic.

Anotation:

Hamatocaulis vernicosus, a rare moss, has been investigated in detail for its habitat preferences, ecology and population dynamics in the Czech Republic. At all its known sites plant species composition was described and relationships with environmental factors investigated (water table, pH, water conductivity). Experiments that included mowing and gap cutting were investigated at three sites over two years.

This research was supported by the Agency for Nature Conservation and Landscape Protection of the Czech Republic and the grant project 6007665801 of the Ministry of Education.

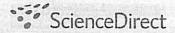
České Budějovice

18. 12. 2006

Táňa Štechová

5 Mechano

Vyjádření spoluautora k předkládané publikaci Štechová & Kučera: The requirements of the rare moss, Hamatocaulis vernicosus (Calliergonaceae, Musci), in the Czech Republic in relation to vegetation, water chemistry and management.


Potvrzuji, že Táňa Štechová provedla při psaní rukopisu práci odpovídající pozici 1. autora článku (sběr dat, vyhodnocení, formulace hypotéz a prezentace výsledků).

V Českých Budějovicích, 18.12.2006

Jan Kučerá

available at www.sciencedirect.com

journal homepage: www.elsevier.com/locate/biocon

² The requirements of the rare moss, Hamatocaulis

- 3 vernicosus (Calliergonaceae, Musci), in the Czech Republic
- 4 in relation to vegetation, water chemistry and management
- 5 Táňa Štechová*, Jan Kučera
- Department of Botany, Faculty of Biological Sciences, University of South Bohemia, Branišovská 31, CZ-370 05 České
- Budějovice, Czech Republic

9

11 ARTICLE INFO

- 12 Article history:
- 13 Received 18 January 2006
- 14 Received in revised form
- 15 5 October 2006
- 16 Accepted 10 October 2006

18 Keywords:

- 19 Fens
- 20 Water table
- 21 Mowing
- 22 Gap cutting
- 23 Vegetation

ABSTRACT

Hamatocaulis vernicosus, a rare moss, has been investigated in detail for its habitat preferences, ecology and population dynamics in the Czech Republic. At all its known sites plant species composition was described and relationships with environmental factors investigated (water table, pH, water conductivity). Experiments that included mowing and gap cutting were investigated at three sites over two years.

Hamatocaulis vernicosus had the highest cover at neutral pH (6.7–7.2) and conductivity between 100 and 250 μ S/cm, although most localities had lower values. It was influenced positively by mowing only at a site with a high vascular plants cover, and gap cutting was only beneficial at sites with a low water table. The growth and vitality of Hamatocaulis may, therefore, be supported by suitable management especially in drier habitats.

© 2006 Published by Elsevier Ltd.

56

57

58

59

60

61

62

63

67

68

69

70

37 38

1. Introduction

40 The aim of this study was to investigate the autecology of one threatened bryophyte species. The species chosen was Hamatocaulis vernicosus (bryophyte nomenclature follows Kučera and Váňa (2003), that for vascular plants follow Kubát et al. (2002)), a widely distributed but rarely common holarctic species, occurring most frequently in the boreal zone (Hedenäs, 45 1989). It belongs to a group of taxa restricted to formerly gla-46 ciated and periglacial areas (Janssens, 1983). In Scandinavia it 47 is locally abundant (Söderström, 1996) but in Central Europe it is a rare species, classified in most countries as threatened (e.g., Ludwig et al., 1996; Kučera and Váňa, 2003). Because of this rarity, it has been listed in Appendix I of the Bern Convention as requiring special attention (Raeymaekers, 1990). One of the main reasons for the rarity of Hamatocaulis ver-

54 nicosus is its specific habitat requirements (Hedenäs, 1999); it

occurs in mineral-rich but usually not particularly calcium-rich habitats, typically in moderately rich fens with local flushes (Hedenäs, 1989; Hugonnot, 2003). There is limited information on the chemistry of its habitat (Janssens, 1983; Hedenäs and Kooijman, 1996; Hedenäs et al., 2003; Heras and Infante, 2000). However, it has been suggested that the genus prefers iron-rich habitats (Hedenäs and Kooijman, 1996).

The moss very rarely produces sporophytes (Smith, 1978; Hedenäs et al., 2003; Hugonnot, 2003). Clearly, spore production will be necessary for effective long-distance dispersal (Sundberg and Rydin, 2002; Sundberg, 2005), and it may be that it was more common in the past under other climatic conditions (Gunnarsson et al., 2005). Nowadays, Hamatocaulis is almost certainly spread by gametophytic fragments, like many other peatland mosses (Poschlod and Schrag, 1990).

^{*} Corresponding author: Tel.: +420387772303; fax: +420387772345.

E-mail addresses: tana.stechova@bf.jcu.cz (T. Štechová), kucera@bf.jcu.cz (J. Kučera).

0006-3207/\$ - see front matter © 2006 Published by Elsevier Ltd.

doi:10.1016/j.biocon.2006.10.021

73

74

75

78

79

80

81

82

86

87

88

89

90

91

92

93

100

101

104

105

106

107

108

109

110 111

112

113

114 115

116

117

118

119

120

121

122

2.

Fragment dispersal is usually effective over short distances, unless the fragments are spread by birds or large mammals.

Wetland species such as Hamatocaulis vernicosus are endangered mainly because of the destruction and degradation of their habitats (Rybníček and Rybníčková, 1974). The cessation of traditional management such as extensive grazing, single-cut, late-season haymaking, and removal of mown material for bedding led to the increasing productivity and decrease of species richness (Fojt and Harding, 1995; Prach, 1996; Diemer et al., 2001). To conserve species richness, a substitution for the traditional management is necessary, and recently a range of suitable alternative management techniques have been tested in these habitats. However, the impact of these treatments on bryophytes is limited. Where it has been investigated (Moen et al., 2001), the mowing of vegetation resulted in a replacement of hummock-building species with prostrate moss species. However, Bergamini and Peintinger (2002) did not find an effect of removal of vascular plants on biomass and shoot morphology of Calliergonella cuspidata.

Here, we describe the observed habitat preferences of Hamatocaulis in the Czech Republic with respect to the water chemistry (pH, conductivity, NH4, NO3, Ca2+ and Fe3+) and its phytosociological relationships. We also performed manipulative experiments, testing the short-term impact of mowing and measured its expansion ability into gaps created in the vegetation. There are few studies on bryophyte autecology, and we hope that this preliminary study will provide an impetus for further work in this

Material and methods 102 2.1. Vegetation and environmental sampling

103 All 28 sites where Hamatocaulis vernicosus was known to occur in the Czech Republic were sampled in May and June 2005 (Table 1). At each site, vegetation relevés were assessed and measurements made of the water table and a range of basic water chemistry variables (pH, conductivity). One to four relevés were recorded at each site depending on the population size of Hamatocaulis; at each relevé the vegetation was assessed by estimating visually the cover of all species in 4×4 m plots (58 in total).

Water pH and conductivity were measured in situ at four positions in each plot using portable devices (Vario pH, WTW, Germany; CM 101, Snail Instruments, Czech Republic). The water table was measured using the PVC discoloration method over the whole vegetation season (Belyea, 1999; Navrátilová and Hájek, 2005).

Seven sites were chosen as representative of the major phytogeographical regions in which Hamatocaulis occurred in the country for a more detailed study of water chemistry (NH $_4^+$, NO $_3^-$, Ca $^{2+}$, Fe $^{3+}$). Below-ground water samples were collected in October 2003, and June, September and October 2004. These samples were filtered and frozen within 24 h for later analysis. NH₄ and NO₃ were determined colorimetrically by flow injection analysis (FIAstar 5012 analyzer, Sweden); Ca2+ and Fe3+ concentration was analysed spectrophotometrically (SpectrAA 640, Australia).

2.2. Manipulative experiments

Three sites (1-3, Table 1) with extensive Hamatocaulis populations were selected for manipulative experiments. Response to moving was tested in permanent 50×50 cm plots (n = 17 at site 2; n = 18 at sites 1, 3), chosen to include the largest part of the population of Hamatocaulis vernicosus at each locality. A sketch of species distribution at each plot was drawn at a mm scale. Half of the plots were mown with a grass-hook and the biomass removed; the rest of the plots were unmown. Mowing was performed twice, in late June 2003 and late June 2004. The sketches from all plots were made again in autumn 2004 and changes in cover were evaluated from the sketches using the Scion Image program (Scion Corporation, 2000).

The ability of Hamatocaulis to expand into created gaps was also observed in 2003 and 2004 in fourteen 15 x 15 cm gaps. dug in each of the three localities. Each gap was cut close to an extant Hamatocaulis colony. The gap depth was dependent on the turf thickness and varied between 6 and 14 cm. The water level in gaps was measured in June and October in both years. At the last visit cover of Hamatocaulis in each gap was measured.

2.3. Data analysis

Canonical correspondence analysis (CCA) was used to evaluate the relationship between the phytosociological data and the environmental data (pH, conductivity, average water table level and its fluctuation expressed as the range between minimum and maximum values). Significance was assessed using a Monte-Carlo test with 499 permutations (Lepš and Šmilauer, 2003).

The interaction of mowing with time on populations of observed species was tested using ANOVA with repeated measurements. The relationship between water level and Hamatocaulis cover in gaps was investigated using multiple linear regression. ANOVA and the regression were computed using Statistica for Windows version 7.1 (StatSoft Inc, 2005).

Results 3.

3.1. Vegetation, water table and chemistry at the localities

In the relevés 177 species (51 bryophytes, 126 vascular plants) were found, the most commonly associated species being listed in Table 2. The variation of vegetation composition was influenced significantly (p = 0.002, F = 4.1) by the environmental variables (Fig. 1). The first canonical axis explains 28% of the variation and is closely associated with a water chemistry gradient (pH, conductivity), whereas axis two explains 12% of the variation and appears closely associated with water table and its fluctuations. At the more base-rich localities (pH = ca. 7; conductivity = $100-250 \mu S/cm$), the commonly associated mosses were Tomentypnum nitens, Campylium stella126

127

128

133

134

137

139 140

141 142 143

144 145

146 147

148 149

150

151 152

153 154 155

> 156 157

158 159 160

161 162

> 163 164

165

166

167

168 169 170

171 172

173 174 175

176 177

Number	Locality	Elevation (m a.s.l.)	Mean annual temp. (°C)	Mean precipitation (mm)	Size of the biotope (ha)	Number of vegetation samples	Mean cover of vascular plants (%)	Water level (cm below ground ± SD)
1	Staré jezero	440	8	625	10	4	60	3.0 ± 2.7
2	V Lisovech	650	6	750	3	4	80	8.2 ± 3.3
3	Vidlák	280	8	675	10	4	55	4.4 ± 3.5
4	Břehyně-Pecopala	275	8	625	2	2	55	5.3 ± 8.5
5	Matenský rybník	525	8	675	2	. 2	80	4.5 ± 3.4
6	Ruda	415	8	625	10	2	50	2.0 ± 2.0
7	Kaliště	655	6	750	4	0	70	
8	Bažiny	620	7	850	1	1	70	3.3 ± 1.5
9	Červený rybník	300	8	625	0.5	2	55	7.5 ± 3.2
10	Dolejší rybník	450	8	575	3	4	55	3.8 ± 5.4
11	Chvojnov	605	7	675	4	1	50	4.0 ± 2.0
12	Hůrky	500	8	525	1	1	70	5.3 ± 4.2
13	Jezdovické rašeliniště	575	7	675	0.5	1	75	3.3 ± 3.1
14	Louky u Černého lesa	570	7	750	3	1	60	4.7 ± 1.5
15	Na Klátově	485	7	675	0.27	1	60	5.7 ± 1.5
16	Na Oklice	660	7	675	10	3	70	4.6 ± 2.8
17	Novozámecký rybník	255	8	625	4	1	60	2.0 ± 1.0
18	Nový rybník u Rohozné	560	7	750	0.5	2	55	5.7 ± 2.9
19	Odměny u rybníka Svět	435	8	750	0.5	2	55	1.2 ± 3.7
20	Prameny Klíčavy	430	8	525	0.5	2	60	3.2 ± 1.2
21	Rašeliniště u Suchdola	625	7	675	2	2	70	1.3 ± 1.5
22	Ratajské rybníky	590	7	750	0.5	2	45	10.8 ± 4.8
23	Řeka	555	6	850	10	4	50	6.3 ± 3.1
24	Řežabinec	370	8	575	0.5	2	55	2.7 ± 2.5
25	Skalské rašeliniště	700	6	850	5	2	60	2.3 ± 1.8
26	Strádovka	580	7	750	0.5	1	60	2.0 ± 3.6
27	Šimanovské rašeliniště	605	7	675	4	3	55	2.4 ± 2.7
28	Zhůřská pláň	1000	5	1100	0.5	1	80	6.0 ± 2.0

The average annual temperatures and annual precipitation are cited according to Syrový (1958).

tum, Philonotis calcarea and Scorpidium cossonii, and vascular plants included Valeriana dioica, Carex dioica, Eriophorum latifolium and Eleocharis quinqueflora. In more acid habitats (pH = 5.8–6.6, conductivity < 100 μ S/cm), these were replaced by Sphagnum fallax, Sphagnum subsecundum, Sphagnum palustre, Warnstorfia exannulata, Eriophorum angustifolium, Agrostis canina, Potentilla palustris and seedlings of trees and shrubs, such as Alnus glutinosa, Betula sp. div., Pinus sylvestris and Salix aurita.

Hamatocaulis cover varied between 0.05% and 30% (Fig. 2), but it exceeded 20% at only four sites. At these sites, the range of pH was between 6.7 and 7.2, conductivity was between 100 and 250 μ S/cm and the water table ranged from 5 to 7 cm below ground level. The majority of other sites were more acid (pH = 6.2–6.6) and had a lower conductivity (<100 μ S/cm). The relationship between Hamatocaulis cover and any of these three measures (pH, conductivity, water table) was not, however, statistically significant.

The average content of $\mathrm{NH_4^+}$ ranged between 0.15 and 0.3 mg/l, that of $\mathrm{NO_3^-}$ between 0.1 and 0.4 mg/l, and $\mathrm{Fe^{3+}}$ between 0.2 and 1.7 mg/l. The $\mathrm{Ca^{2+}}$ content varied mostly between 3 and 10 mg/l, with an exceptional range between 20 and 30 mg/l at one locality. No correlation was found between concentration of these elements and the cover of Hamatocaulis.

3.2. Mowing

The effect of mowing Hamatocaulis vernicosus (Fig. 3) was significant only at the locality 'V Lisovech' (p = 0.0213, F = 6.6), where the cover of Hamatocaulis vernicosus increased in mown plots and decreased rapidly in control plots.

3.3. Gap cutting

The expansion into gaps by Hamatocaulis vernicosus was dependent on gap water level (p=0.0005, F=22.4; Fig. 4). Shallow gaps (ca. 6–8 cm deep) with a low water level (ca. 1 cm deep) were gradually colonized by Hamatocaulis vernicosus and other associated mosses, most often Calliergonella cuspidata, Campylium stellatum or Calliergon cordifolium. In deeper gaps (ca. 10 cm) with a higher water table, Hamatocaulis cover was lower. No expansion was observed in gaps which were completely filled up with water (water level 8–9 cm). Similar results were observed with other associated pleurocarpous mosses.

4. Discussion

At all localities (and in 91% of vegetation samples), Hamatocaulis vernicosus grows with Calliergonella cuspidata, which ac-

Please cite this article in press as: Štechová, T., Kučera, J., The requirements of the rare moss, Hamatocaulis ..., Biol. Conserv. (2006), doi:10.1016/j.biocon.2006.10.021

Mosses		Vascular pla	ints
Associated species	% Samples	Associated species	% Samples
Calliergonella cuspidata	91	Carex nigra	72
Aulacomnium palustre	61	Equisetum fluviatile	70
Bryum pseudotriquetrum	60	Carex rostrata	67
Sphagnum teres	60	Potentilla palustris	65
Straminergon stramineum	56	Galium uliginosum	61
Campylium stellatum	44	Menyanthes trifoliata	61
Sphagnum warnstorfii	30	Lysimachia vulgaris	60
Warnstorfia exannulata	30	Agrostis canina	58
Sphagnum fallax	28	Carex diandra	54
Tomentypnum nitens	28	Galium palustre	51
Amblystegium radicale	25	Valeriana dioica	51
Calliergon giganteum	25	Epilobium palustre	49
Calliergon cordifolium	23	Salix cinerea	47
Sphagnum contortum	23	Viola palustris	47
Climacium dendroides	21	Carex panicea	46
Scorpidium cossonii	21	Eriophorum angustifolium	42
Drepanocladus polygamus	18	Potentilla erecta	42
Hypnum pratense	16	Cirsium palustre	40
Aneura pinguis	12	Carex lasiocarpa	39
Sphagnum fimbriatum	12	Peucedanum palustre	37
Sphagnum flexuosum	12	Betula sp.	33
Sphagnum palustre	12	Equisetum palustre	33

cords with observations at British and German localities 223 (Church et al., 2001; Müller and Baumann, 2004). Other regular 224 associates include the mosses Aulacomnium palustre, 225 226 Straminergon stramineum and Bryum pseudotriquetrum and the vascular plants Equisetum fluviatile, Lysimachia vulgaris, Epilo-227 bium palustre, Potentilla erecta and Cirsium palustre. The most 228 229 commonly associated Sphagnum species were S. teres, S. 230 warnstorfii and S. contortum, all known to be relatively calcitol-231 erant species, and S. fallax which thrives in a wide range of 232 chemical and hydrological conditions (Daniels and Eddy, 233 1990; Hájková and Hájek, 2004). We also found the taxonom-234 ically-related speciesScorpidium cossonii as a common associate at sites with a high pH and conductivity, which is 235 236 contrary to Swedish surveys, where Scorpidium cossonii rarely grows with Hamatocaulis (Hedenäs, 1989). 237

238 4.1. Water chemistry at the localities

The pH values at observed localities confirmed the general 239 assumption that Hamatocaulis requires slightly acid to slightly 240 241 base-rich conditions (Hedenäs, 1989; Vitt, 2000; Hedenäs et al., 242 2003; Hájková, 2005). However, Spanish data have shown Hamatocaulis vernicosus occurring between pH 4.5-5 (Heras and In-243 fante, 2000), surprisingly growing alongside Tomentypnum 244 nitens and Meesia triquetra, both species being rich-fen species. 245 Conductivity and NH₄, NO₃, and Ca²⁺ concentrations are con-246 sistent with values mentioned by Hedenäs and Kooijman 247 248 (1996). However, our measurements for Fe concentration (mean = 0.71 mg/l) did not show any exceptional value and was much lower than the unusually high value of 2.24 mg/l reported for the genus Hamatocaulis by Hedenäs and Kooijman (1996), suggesting it does not have exceptional Fe requirements.

4.2. Mowing

The differential influence of mowing on Hamatocaulis vernicosus appears to be correlated with vascular plant cover. At 'V Lisovech' (site 2), vascular plant cover was about 20% greater than the other two sites, where the higher water table (cf. Table 1) keeps the cover of vascular plants low.

The reasons for decline of the Hamatocaulis colonies with the increasing cover of vascular plants might be diverse. One of them may include a reduced solar radiation available for bryophytes through competition with the plants or their accumulating litter, litter accumulation in its own right causing nutrient concentrations to rise. Elevated nutrient concentrations have been shown to change the relative balance between moss species that are tolerant of higher nutrient concentrations and those unable to benefit from it (Malmer et al., 1992; Kooijman, 1993; Kooijman and Bakker, 1995).

4.3. Gap cutting

The ability of *Hamatocaulis* to colonize the gaps appeared to be dependent on the water table. Despite its preference for wet microsites, completely inundated gaps were never colonized. This is consistent with Janssens (1983), who describes the species not developing permanently submersed forms in contrast to, e.g., *Warnstorfia exannulata*. Consequently, gap cutting makes little sense in localities where the water table is high. The positive effect of creating gaps was noticeable in the drier sites, where the species thrived on the edges of small pools or ditches, created here (independently of our experiments) to support the growth of some vascular plants.

Hamatocaulis vernicosus was able to spread into and cover more than a half of the gaps in the course of two seasons with 253

254

255

269

270

271

272

273

274

275

276

277

278

279

280

281 282

268

v.

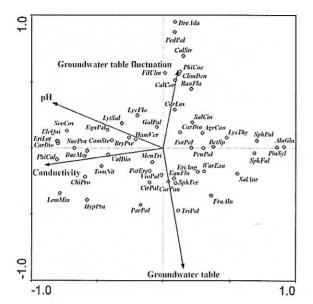


Fig. 1 - Species-environment biplot from CCA summarizing the relationship between species and the measured environmental characteristics - pH, conductivity, mean water table depth and fluctuation. Mosses: CalCor - Calliergon cordifolium, CamSte - Campylium stellatum, ChiPro -Chiloscyphus profundus, CliDen - Climacium dendroides, DreAdu – Drepanocladus aduncus, HamVer – Hamatocaulis vernicosus, HypPra - Hypnum pratense, PhiCae - Philonotis caespitosa, PhiCal - P. calcarea, ScoCos - Scorpidium cossonii, SphFal - Sphagnum fallax, SphPal - S. palustre, SphTer - S. teres, TomNit - Tomentypnum nitens, WarExa - Warnstorfia exannulata. Vascular plants: AgrCan - Agrostis canina, AlnGlu -Alnus glutinosa, BetSp - Betula sp., CalStr - Calamagrostis stricta, CarDio - Carex dioica, CarLas - C. lasiocarpa, CarPan -C. panicea, CirPal - Cirsium palustre, DacMaj - Dactylorhiza majalis, EquPal - Equisetum palustre, EleQui - Eleocharis quinqueflora, EriAng - Eriophorum angustifolium, EriLat - E. latifolium, FilUlm – Filipendula ulmaria, GalPal – Galium palustre, LemMin - Lemna minor, LycFlo - Lychnis flos-cuculi, LysThy - Lysimachia thyrsiflora, LytSal - Lythrum salicaria, MenTri - Menyanthes trifoliata, ParPal - Parnassia palustris, PedPal - Pedicularis palustris, PeuPal - Peucedanum palustre, PinSyl - Pinus sylvestris, PotEre - Potentilla erecta, PotPal - P. palustris, RanFla - Ranunculus flammula, SalAur - Salix aurita, SalCin - S. cinerea, SucPra - Succisa pratensis, TriPal -Triglochin palustre, ValDio - Valeriana dioica, VioPal - Viola palustris.

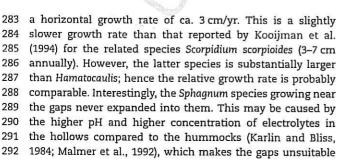


Fig. 2 – Relationship between Hamatocaulis vernicosus cover, pH and water table. The size of dots relates to the number of vegetation samples (range 1–5 samples).

for most species of Sphagnum, as they prefer more acid habitats (Gorham and Janssens, 1992; Vitt, 2000).

4.4. Recommendations

We conclude that the eventual active management for Hamatocaulis vernicosus should take into consideration the water regime, vegetation composition and herb cover. The results of these preliminary manipulative experiments confirm that management is not necessary in all wetland habitats, being necessary only in "artificial" or man-influenced habitats such as wet meadows (Kooijman et al., 1994; Hedenäs, 2003), where the water table is unstable and cover of vascular plants high. At these localities, the growth and long-term persistence of Hamatocaulis vernicosus can be supported by cutting small shallow gaps.

For a more exact prediction of reaction of Hamatocaulis populations to management, more detailed investigation of variation in growth rates of Hamatocaulis in different habitats is necessary, as well as specific research of competitive rates in Hamatocaulis and other moss species. Similar studies are needed for most rare bryophyte species and effective bryophyte conservation cannot be achieved until such knowledge is available.

293 294

295

296

297

298

299

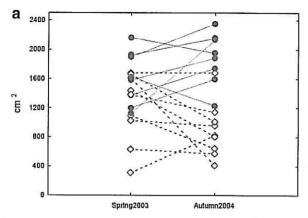
300

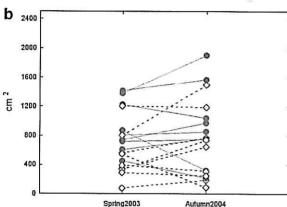
301

302

303

304


305


306

307

308

309

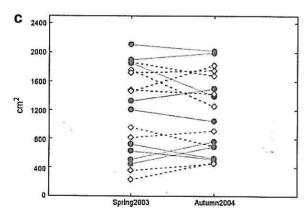
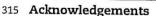



Fig. 3 – Effect of mowing Hamatocaulis vernicosus. Full circles show the cover of Hamatocaulis before and after the experiment in mown plots, empty ones represent the control plots. a – locality V Lisovech, b – locality Staré jezero, c – locality Vidlák.

This project was supported by the Agency for Nature Conservation and Landscape Protection of the Czech Republic and the grant project 6007665801 of the Ministry of Education. We thank Milan Štech for his help with the field work, two anonymous reviewers for critical comments on a previous version of this paper and Roy Perry (Dinas Powys, UK) for the linguistic correction of the manuscript.

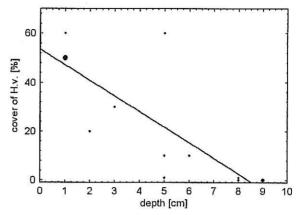


Fig. 4 – Linear regression (p = 0.0005, F = 22.4) of Hamatocaulis vernicosus expansion into the gaps. The size of dots relates to the frequency of observations (range 1–3 observations).

REFERENCES

Belyea, L.R., 1999. A novel indicator of reducing conditions and 324

water-table depth in mires. Functional Ecology 13, 431–434.
Bergamini, A., Peintinger, M., 2002. Effects of light and nitrogen on morphological plasticity of the moss Calliergonella cuspidata.
Oikos 96, 355–363.

Church, J.M., Hodgetts, N.G., Preston, C.D., Stewart, N.F., 2001.
British Red Data Books Mosses and Liverworts. Joint Nature
Conservation Committee, Peterborough.

Daniels, R.E., Eddy, A., 1990. Handbook of European Sphagna. HMSO, London.

Diemer, M., Oetiker, K., Billeter, R., 2001. Abandonment alters community composition and canopy structure of Swiss calcareous fens. Applied Vegetation Science 4, 237–246.

Fojt, W., Harding, M., 1995. Thirty years of change in the vegetation communities of 3 valley mires in Suffolk, England. Journal of Applied Ecology 32, 561–577.

Gorham, E., Janssens, J.A., 1992. Concept of fen and bog reexamined in relation to bryophyte cover and the acidity of surface waters. Acta Societatis Botanicorum Poloniae 61, 7–12.

Gunnarsson, U., Hassel, K., Söderström, L., 2005. Genetic structure of the endangered peat moss Sphagnum angermanicum in Sweden: a result of historic or contemporary processes? Bryologist 108, 194–203.

Hájková, P., 2005. Bryophytes. In: Poulíčková, A., Hájek, M., Rybníček, K. (Eds.), Ecology and Palaeoecology of spring fens of the West Carpathians. Palacký University, Olomouc, pp. 151– 174.

Hájková, P., Hájek, M., 2004. Bryophyte and vascular plant responses to base richness and water level gradients in Western Carpathians Sphagnum rich mires. Folia Geobotanica 39, 335–351.

Hedenas, L., 1989. The genera Scorpidium and Hamatocaulis gen.

323

325

327

328

330

331

333

334

335

336

338

339

341

342

343

344

345

346

348

349

350

352

353

354

355

351

347

340

337

332

329

326

nov. in northern Europe. Lindbergia 15, 8-36. 356 Hedenäs, L., 1999. Altitudinal distribution in relation to latitude; 357 with examples among wetland mosses in the 358 Amblystegiaceae. Bryobrothera 5, 99-115. 359 Hedenäs, L., 2003. The European species of the Calliergon-360 Scorpidium-Drepanocladus complex, including some related or 361 similar species. Meylania 28, 1-117. 362 Hedenäs, L., Kooijman, A.M., 1996. Phylogeny and habitat 363 adaptations within a monophyletic group of wetland moss 364

365 366	genera (Amblystegiaceae). Plant Systematics and Evolution 199, 33–52.	Moen, A., Nilsen, L.S., Øien, DI., Arnesen, T., 2001. Outlying	411
367		haymaking lands at Sølendet, central Norway: effects of	412
368	Hedenäs, L., Bisang, I., Schnyder, N., 2003. The distribution of	scything and grazing. Norsk Geografisk Tidsskrift 53, 93–102.	413
369	bryophytes in Switzerland and Liechtenstein IV. Hamatocaulis	Müller, F., Baumann, M., 2004. Zur Bestandssituation der	414
370	and Pseudocalliergon. Botanica Helvetica 113, 111–123.	Moosarten der FFH-Richtlinie in Sachsen. Limprichtia 24, 169-	415
371	Heras, P., Infante, M., 2000. On the presence of Hamatocaulis	187.	416
372	vernicosus (Mitt.) Hedenäs (Amblystegiaceae) in Spain. Journal	Navrátilová, J., Hájek, M., 2005. Recording relative water table	417
373	of Bryology 22, 297–298.	depth using PVC tape discolouration: Advantages and	418
374	Hugonnot, V., 2003. Rapport sur la présence de Hamatocaulis	constraints in fens. Applied Vegetation Science 8, 21–26.	419
375	vernicosus (espèce de l'annexe II de la Directive Habitats) dans	Poschlod, P.U., Schrag, H., 1990. Regeneration vegetativer Teilchen	420
376	le Parc National des Pyrénées, zone périphérique. Convention	von "Braunmoosen. Telma 20, 291–301.	421
377	no. 2003-15S. Association Loisirs Botaniques, Parc National des	Prach, K., 1996. Degradation and restoration of wet and moist	422
	Pyrénées.	meadows in the Czech Republic: general trends and case	423
378 379	Janssens, J.A., 1983. Past and extant distribution of Drepanocladus	studies. Acta Botanica Gallica 143, 441–449.	424
380	in North America with notes on the differentiation of fossil	Raeymaekers, G., 1990. Lower plants: mosses and liverworts. In:	425
381	fragments. Journal of the Hattori Botanical Laboratory 54, 251–	Council of Europe – Conseil de l'Europe (ed.), Convention on	426
382	298.	the conservation of European wildlife and natural habitats.	427
383	Karlin, E.F., Bliss, L.C., 1984. Variation in substrate chemistry along	Revision of Appendix I. Non vascular plants. Strasbourg, pp.	428
384	microtopographical and water-chemistry gradients in	21–52.	429
385	pestlands. Canadian Journal of Botany 62, 142–153.	Rybníček, K., Rybníčková, E., 1974. The origin and development of	430
386	Kooijman, A.M., 1993. Causes of the replacement of Scorpidium	waterlogged meadows in the central part of the Sumava	431
387	scorpioides by Calliergonella cuspidata in eutrophicated rich fens	foothills. Folia Geobotanica 9, 45–70.	432
388	1. Field studies. Lindbergia 18, 78–84.	Scion Corporation, 2000. Scion Image for Windows. Scion Image	433
389	Kooijman, A.M., Bakker, C., 1995. Species replacement in the	for Windows. (on day 11.1.2005 at http://	434
390	bryophyte layer in mires: the role of water type, nutrient	www.meyerinst.com/html/scion/	435
391	supply and interspecific interactions. Journal of Ecology 83, 1–8.	scion_image_windows.htm>).	436
392		Smith, A.J.E., 1978. The Moss Flora of Britain and Ireland.	437
393	Kooijman, A.M., Beltman, B., Westhoff, V., 1994. Extinction and	Cambridge University Press, Cambridge.	438
394	reintroduction of the bryophyte Scorpidium scorpioides in a rich-	Söderström, L. (Ed.), 1996. Preliminary distribution maps of	439
395	fen spring site in the Netherlands. Biological Conservation 69, 87–96.	bryophytes in Northwestern Europe, vol. 2. Musci (A–I).	440
396	Kubát, K., Hrouda, L., Chrtek, J. jun., Kaplan, Z., Kirschner, J.,	Mossornas Vänner, Göteborg.	441
397	Štěpánek, J. (Eds.), 2002. Klíč ke květeně České republiky [Key	StatSoft Inc, 2005. Statistica (data analysis software system),	442
398	to the Flora of the Czech Republic]. Academia, Praha.	version 7.1, <www.statsoft.com>.</www.statsoft.com>	443
399	Kučera, J., Váňa, J., 2003. Check- and Red List of bryophytes of the	Sundberg, S., 2005. Larger capsules enhance short-range spore	444
400	Czech Republic. Preslia 75, 193–222.	dispersal in Sphagnum, but what happens further away? Oikos 108, 115–124.	445
			446
402	using CANOCO. Cambridge University Press, Cambridge.	Sundberg, S., Rydin, H., 2002. Habitat requirements for	447
403	Ludwig, G., Düll, R., Philippi, G., Ahrens, M., Caspari, S., Koperski,	establishments of Sphagnum from spores. Journal of Ecology	448
404	M., Lütt, S., Schulz, F., Schwab, G., 1996. Rote Liste der Moose	90, 268–278.	449
405	(Anthocerophyta et Bryophyta) Deutschlands. Schriftenreihe	Syrový, S. (Ed.), 1958. Atlas podnebí Československé republiky.	450
406	für Vegetationskunde 28, 189–306.	Ústřední správa geodesie a kartografie, Praha.	451
407	Malmer, N., Horton, D.G., Vitt, D.H., 1992. Element concentrations	Vitt, D.H., 2000. Peatlands: ecosystems dominated by bryophytes.	452
408	in mosses and surface waters of western Canadian mires	In: Shaw, A.J., Goffinet, B. (Eds.), Bryophyte Biology. Cambridge University Press, Cambridge, pp. 312–343.	453 454
409	relative to precipitation chemistry and hydrology. Ecography	omversity riess, camonage, pp. 312-343.	454
410	15 114–128		700