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1. Introduction

1. Introduction

1.1  Ecological invasions of plants
The process of species migration and exchange has taken place as long as species

have existed. Colonization of new places and free niches and growth of newly established

populations are natural and biosphere-wide. If such events are natural, what distinguishes

the cases called ecological invasions?

The basic factor that characterizes the ecology of species invasion is its connection

to human activities. Anthropogenic influence on vegetation has been occurring for at least

10 thousand years (since the neolithic period), when man as primitive agriculturalist (first

as  herdsmen and  consequently  as  farmers)  started  to  manage  the  landscape.  At  the

beginning,  the  human  impact  was low  and  local,  but  the  acceleration  of  cultural

development led to unprecedented change in the dynamic of species exchange. Since the

time when this acceleration has changed the rate of species exchange we have began to

speak  about  invasions.  There  are  several  historical  events  in  the  last  few  centuries

evidently connected with the increasing rate of ecological invasions. The most important

of these are colonization of new continents after Great Discoveries (during the 15th and 16th

cent.),  expansion  of  urban  areas  and  increasing  rate  of  many  types  of  disturbances

(constructions,  mines, 19th-20th cent.), and globalization of trade and personal movements

in last 30 years (di Castri 1990). One of entry points for plant invaders can be botanical

gardens. Europeans tended to carry their own plants to new colonized sites and bring home

exotic ones in return. Some of the  European neophytes were brought as decorative plants

and  later  escaped  into  open  country  (Reynoutria spp.,  Heracleum  mantegazzianum).

Others  were used  as  agriculture  or  technical  plants  (Robinia pseudacacia,  Helianthus

tuberosus). 

Secondly,  a less evident  but  typical trait  of ecological  invasion is  its  impact  on

native species as well as expenses occurring when any expansion of invaders would need

to be suppressed, e.g. for conservation or economic purposes. Non-native species increase

the  cost  of  managing  cultivated  landscape,  where  they can  be  detrimental  weeds  in

agriculture,  productive  forestry  or  even  in  our  gardens.  They  complicate  nature

conservation,  when they occupy niches  of native  species.  They can change habitat  soil
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1.1 Ecological invasions of plants

characteristics  (Hadincová  et  al.  1997)  and  consequently  decrease  native  species

populations (Vitousek at al. 1997).

There are  studies describing the progress of invasion in  several phases (Kowarik

1995), and others using identification of these phases for estimating species- invasiveness.

Unfortunately not all species formerly predicted as potential invaders act as invaders at all

sites (Pyšek 2001). More than half of such cases stop at an earlier phase of invasion and do

not need any further action. Such situations require more detailed  studies of individual

species, especially research in the field  of automated prediction of potentially endangered

sites. 

1.2  Predicting invasions
The  time-proved  rule  that  prevention is  often  the  most  effective  solution  of

problems  with  exponential  curve  of  progress,  is  valid  also  in  the  case  of  inevitable

biological  processes  like  ecological  invasions.  This  means  any prospective  works that

allow the detection of invasions in their initial stages could be useful (Macdonald 1990,

Richardson et al. 1989, or di Castri 1990).

A promising approach to such detection is to collect a database of invaded areas

and establish a predictive system, which can identify the area of potential invasion . The

next  step is  to choose the most  effective  method for monitoring such sites (Cronk and

Fuler 1995). Thus if any initial phase of invasion is recognized an effective reaction can be

undertaken. The first  mentioned step - identification of the site - is  often realized using

predictive modeling. Modeling strategy and methods vary with the time and goals a given

of study.  Guisan and Zimmerman  (2000) summarize  various approaches  and statistical

methods, as well as cite many other less complex reviews, e.g. Franklin's (1995) review of

exact statistical methods suitable for model-building or  Brown's (1995) recapitulation of

species abundance and distribution.

Linking the geographical information system (GIS) with a statistical model is  the

most useful tool in predicting species distribution (Hastings 1996) and can be also used in

predicting  endangered  sites.  The  GIS  is  the  input/output  module  of  the  system.

Environmental variables and the presence/absence data in  unified spatial scale represent

input  information  for  the  statistical  model.  The  probability  of  occurrence in  the
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1.2 Predicting invasions

investigated site is achieved by comparing the combination of environmental variables in

the occupied  sites  to those in  all  available  sites.  The rate of reproduction or  dispersal

strategies can be also included if there is any need for time-dependent response. Additional

variables can be used the in case of an invasive process: level of disturbance, type of land-

use, distance to potential travel  corridors such as rivers,  railways,  or roads (Zalba et al.

2000). If all relevant information is covered by a model, the GIS layers with probability of

occurrence changing in time can be released as a powerful tool in landscape management,

nature conservation or research.

1.3  Predictive systems
There are several predictive systems which work as described above. This study

uses GRASP - Generalized  Regression Analysis  and  Spatial Prediction (Lehmann et al.

2002), an extension of statistical software based on GAM – generalized additive models

(Hastie  et  Tibschirani  1986).  The  details  of  using  GRASP  are  mentioned  in  the

methodology section 3.5. There are also other systems which are often used: The Genetic

Algorithm  for  Rule-set  Production  called  GARP,  which  tries  to  find  non-random

correlations  between  the presences  and  absences  of the  species  and  the  values  of the

environmental predictors, as well as form a set of rules, which is later used for prediction.

Currently there are four types of rules implemented: atomic, logistic regression,  climatic

envelope and negated climatic envelope rules (Peterson 2001). BIOCLIM - A Bioclimatic

Analysis  and Prediction System - considers only climatic  variables  and is  often used to

prepare climatic datasets for other modeling systems (Busby 1986, Busby 1991). FloraMap

- works on a continental scale and also considers only the climatic environmental variable

(Jones et Gladkov 1999). MIGRATE, often used for plant  dispersal  modeling, is  a cell

based model using logistic regression (Collingham et al. 1996). Lastly there is Biomapper,

which  is  based  on Ecological  Niche  Factors Analysis  (ENFA,  Hirzel  et  al.  2002)  - a

mutation of PCA adapted for habitat suitability prediction (Hirzel et al. 2001). All these

systems are summarized in Tab.1.
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1.3 Predictive systems

Tab.1: Overview of prediction systems and model types

System Model References Example of use

GARP set of rules: climatic
envelope, regression,
ANN

Peterson et Cohoon 1999

Peterson 2001

Stockwell et Peters 1999

Elith et Burgman 2001

GRASP GAM Lehmann et al. 2002 Zaniewski et al. 2002

BIOCLIM linear regression,
predictors envelope

Busby 1986

Busby 1991

Hutchinson 1989

MIGRATE logistic regression Collingham et al. 1996 Wadsworth et al. 2000

Biomapper PCA, ENFA Hirzel et al. 2001

Hirzel et al. 2002

Dettki et al. 2003

Patthey 2003

- ANN - Artificial Neural
Networks

Lek et al. 1996

Mastrorillo et al. 1997

Several systems based on multilevel predicting and self-learning such as GARP and

the use of the artificial  neural networks are able to give very precise prediction on one

concrete  dataset,  but  prediction rules  are  study-specific  and  further  interpretation  and

generalizations  are difficult  (Guisan and Zimmerman  2000). Systems  based on logistic

regression or ENFA are suitable for precise prediction using the space of predictors with

more variables. Only one model approach (GARSP) was performed in this study although

a multi-approach comparison is more widely recommended.
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1.4  Invasive trees in the Czech Republic
Eight  trees in  the Czech Republic  are classified  as  invasive:  Acer negundo  L.,

Ailanthus altissima (Mill.)  Swingle,  Fraxinus pennsylvanica  Marshall,  Pinus strobus L.,

Populus  ×  canadensis  Moench,  Prunus  serotina Ehrh.,  Robinia  pseudacacia L.  and

Quercus rubra L. (Pyšek 2002). Most of them were introduced as timber wood or anti-

erosion vegetation cover. Common to all of them is fast growth and mass production of

seeds. They are often planted in  plantations and/or along roads so sources of seeds are

widely dispersed. All  of them, if  occuring as mono-dominant,  suppress the understorey

herbs or change the habitat characteristics (free nutrients, soil reaction). Most of these trees

are reported as also  being  invasive  in  Poland  (Tokarska-Guzik  2003)  and/or  Germany

(countries with comparable climatic region) as invasive too.

1.5  Acer negundo

Nomenclature

The  Latin name  Acer negundo L. is  used in  this study according to  Kubát  et al.

2002 (the usual common nomenclature  codex in Czech republic  since 2002). This name

can be found in  most papers dealing with the species as well as “boxelder“ in  English,

though other names  also exist:  Negundo aceroides Moench. in  Latin and others  English

synonyms such as: ash-leaved maple,  black ash,  cut-leaved maple,  maple  ash,  negundo

maple, Red River maple, Manitoba maple, stinking ash, sugar ash and three-leaved maple

(Brink 1954).

Ecology

Acer negundo is  a  deciduous tree from the  Aceraceae family,  grows up to 25m

height, and lives about sixty years. It is a fast-growing species and often occurs in multi-

trunk,  shrub-like form (Slavík  ed.  1997).  This  growth habit  corresponds to  its  natural

biotope and life  strategy: Typical habitats are moist  soils  in  flooded areas, banks along

rivers and lakes, or swamp margins.  Boxelder is  namely an understorey tree of floodplain

forests.  Successionally boxelder  comes at initial  phase following  Populus deltoides and

willows  in  new  grounds  in  alluvial  bottoms  and  persists  to  the  middle  stage  in  the

understorey to be forced out by shading in later stages of succession. The forests where
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1.5 Acer negundo

Acer negundo naturally occurs can be found in eastern and central parts of North America.

These alluvial  forests are dominated by  Ulmus americana, Populus deltoides,  Fraxinus

nigra, Quercus palustris , and Salix sp. (Dollar 1992).

Invasiveness

Boxelder is  one of the 10% of neophytes in the Czech republic  coming from the

North America. It is one of 69 species classified as invasive in our country (Pyšek et al.

2003).

Boxelder has several life  history traits commonly regarded as typical for invasive

species.  These traits are: mass production of well germinating seeds,  effective dispersal

mechanisms,  short juvenile  period and fast growth (compare  Williamson et Fitter 1996,

Noble 1989). Winged  autorotatial seeds are useful for local dispersal in  tens of meters.

Vegetative spread from root sprouting enables long-term site occupancy and short-distance

propagation (meters).  River-flow or  flood water intermediate long-distance transport of

both  propagules types: seeds and vegetative parts. Sprouting from 20 cm long and 2cm

diameter  boxelder  sticks  has  been  observed  during  field  work  and  was  reported  by

Komissarov (1964).

Occasional expansion in abandoned fields has been observed in boxelder‘s natural

range. The adaptation to an initial phase of succession mentioned above makes boxelder a

pioneer plant in many cases. (Maeglin et Ohmann 1973)
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2. Aims
This thesis heads towards several goals consistent with the problematic described

in the introduction chapter. First, the habitats where boxelder spreads spontaneously,  are

determinate  and  any co-occurrence species  are  identified.  As  suggested  by  boxelder's

native habitat, riparian forests would most likely be the most commonly invaded type of

vegetation. Evidence for this suggestion is collected from the available datasets.

Because all invaders are strongly related to landscape influenced by man, distances

to  roads,  towns  or  railways  are  tested  as  possible  predictors  in  boxelder  distribution

modeling. Furthermore, selected environmental variables are used in models of potential

distribution.  The types  of information handling,  the ways of deriving  variables  in  GIS

environment, as well as different scales are compared. These goals are extracted below.

1) To identify main habitats being invaded by boxelder

2) To evaluate  any climatic  or geographic  variables useful  for  prediction  of the

invasion in geographical space

3) To compare a few approaches in using GIS

4) To evaluate built models among themselves and by another dataset
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3. Methods

3.1  Datasets

Releves

The phytocenological releves were sampled in sites with sponaneous occurrence of

Acer negundo. The extent of the releve, 10x10m,  corresponds to the special character of

several  investigated sites: either  ruderal stands along rivers and roads, or the abandoned

land in industry areas. Some seminatural stands have been found in alluvial and rarely in

other types of forests. All vascular plants were  recorded in these plots. Their  abundance

was estimated in percentages with special categories (+ and r) for low density in the sense

of  Braun-Blanquet.  A  total  of  171  releves  were  analyzed,  including  70  new  releves

sampled  by  the  author   (2003,  2004)  and  101  releves  from  The  Czech  National

Phytosociological Database (Chytrý et Rafajová 2003).

9

Fig.1.  Distribution  of  Acer  negundo  in the Czech Republic.  Yellow  boxes  are releves  from the national
database  or  collected  by  author,  yellow  crosses  are  records  from  national  mapping  where  boxelder
spontaneous  spreads  and  the  red  crosses  signals  where  is  boxelder  but  spontaneous  spread  was  not
confirmed.



3.1 Datasets

Presence data

The information on boxelder occurrences was obtained from three sources:

a)  Most  of the  records come  from recent  national  vegetation mapping (Guth

2002),  which  was  performed  by

AOPK  -  Agency for  Nature  and

Landscape Conservation in the years

2001-2004  and  is  the  basis  for

European net  of conservation areas

NATURA  2000.  This  mapping

covers  all  natural  or  seminatural

landscape  in  the  country  and  was

performed  for  conservation

purposes. Unfortunately the invasive

species were not the target and this

information was not  collected by all  of the experts.  It  means  only presence data were

available.b)  The  second  part  of  presence-data  comes  from  The  Czech  National

Phytosociological  Database  (Chytrý et  Rafajová   2003).  Here  both  types  of  data  are

available,  from natural and rural sites.  Unfortunately this  dataset does not cover all the

country equally, see Fig. 2.

c) The releves described above were sampled to cover all types of sites where Acer

negundo has been spontaneously spreading. The sites were selected with special regard for

anthropogenic history to complete dataset for all:  natural, semi-natural, ruderal and urban

sites.

An independent dataset was used for model evaluation. Presence/absence data were

derived from the map (Slavík 1997, abbreviated as  slav  in graphs and tables) indicating

squares of standardized mapping grid (see section 3.1 for details), where Acer negundo is

present, whether planted or wilding individuals.

Pseudo-absence data

The absence of invasive species in its new areal can be caused by both, history of

invasion process or unsuitability of the conditions at the site. So there are no true absence

10
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3.1 Datasets

data available. The subset of pseudo-absence data was sampled randomly. Pseudo-absence

were  used  for  GARSP system,  see  modeling  description  in  chapter  3.5, because  this

method requires  the absence data for model  fitting.  The  generated subset  of sites was

filtered through the  presence  data to  get  this  pseudo-absence  information.  No  random

absences were allowed within a distance of 2,5 km around presence points - the distance

was chosen arbitrary (compare Zaniewski et al. 2002). This absence-protected area partly

deals  with  autocorrelation of species  occurrence,  which is  common in  ecology due the

11

Tab.2.  Characteristic  of  variables  used  as  environmental predictors.  Scale  types:  R - ratio,  C - circular,
I - interval,  O - ordinal, F - factorial,  If the m is before the variable name, then it is an average for some
area..

Variable Abbr. Scale Unit Description
altitude alt R m data from www.arcdata.cz rescaled to grid with100m

square
slope slo C ° calculated in GIS from altitude
southwestness swn I calculated in GIS from altitude: cos(aspect-225°); in

interval (-1;1) gives information about deflection from
SW = 1

heat index hix calculated in GIS from altitude: cos(aspect-225°)*tg
(slo)

mean annual
temperature

mat O ° 8 intervals represented by mean values: 2; 3,5; 4,5; 5,5;
6,5; 7,5; 8,5; 9,5

mean annual sum
of precipitation

msp O mm 7 intervals represented by mean values: 450, 550, 650,
750, 900, 1100, 1300

distance to river drv R km calculated for grid with cell side 1km and 100m
distance to towns dtw R km calculated for grid with cell side 1km and 100m
distance to large
towns

dci R km calculated for grid with cell side 1km and 100m; only
towns with more then 100 000 inhabitants

distance to
railways

drw R km calculated for grid with cell side 1km and 100m

distance to roads dro R km calculated for grid with cell side 1km and 100m
distance to national
road

drn R km calculated for grid with cell side 1km and 100m

potential
vegetation

mpv F Neuhäuselová 1998, 44 levels, see Tab.7 in appendix

geology geo F 20 levels, see Tab.8
land cover lcv F 4 levels  of  land  cover (buildings,  forest,  agricultural

land, water)

http://www.arcdata.cz


3.1 Datasets

factors like reproduction and dispersion (Guisan and Zimmerman 2000).

Environmental data

The information about environment was collected from several sources and added

to a GIS database. Tab.2 describes the basic characteristic of the environmental dataset and

Tab.3 shows characteristics of 3 grids in different  scales,  which were used in the study:

grids with squares 100m, 1km and cca 12x11 km. The last one is the standardized grid for

Middle-European flora and fauna mapping (in text as standardized mapping grid) and is

defined as 10x6 geographical minutes.

Basic topographic information was derived from the digital elevation model (DEM)

with  100  m  steps.  The  elevation,  the  slope  and  the  „southwestness“-  number  in  the

subrange of (-1;1),  which gives  the information about  deflection of the slope from the

warmest  orientation  and  the  combination  of  slope  and  southwestness  in  heat  index:

hi = cos(southwestness)*tg(slope). 

The  effects of  three  factorial  variables  were  tested:  potential  vegetation  types

(Neuhäuselová  1998) - 52 categories see  Tab.7 in  appendix  for description, 20 classes of

geological substrate (map in  1:500 000 scale,  see  Tab.8 in  appendix)  and 4  land cover

classes including urban areas, agricultural landscape, forests and water.

Furthermore the relations between Acer negundo-wilding sites and several potential

anthropogenic or natural vectors - rivers, roads, railways and the spatial pattern of cities -

were investigated. The distances to these features were calculated in two ways: in vector

layers as distance between points, lines and boundaries and in a grid with 100m squares.

The first approach allows to get distances with high accuracy for exploring relations in real

local scale. The second one is useful for landscape scale prediction of boxelder occurrence.

Tab.3. Spatial characteristics for three different scales used in the study 

square site N. of cells total N. of cells presences
100 m 7876200 950

1000 m 78862 592

12 x 11km

(standardized mapping grid)

678 144
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3.2 GIS analysis approach

3.2  GIS analysis approach
Principally two approaches were used for spatial analysis  - the point  one and the

polygon one:

a) In the point approach the information was taken from thematic layers only where

points of presence or absence were situated. It means the variable for one point gets the

same  value  as  the  cell  of  the  grid  layer  in  which that  point  falls.  The  matrix  of  11

continuous variables and 3 factors was built in this way.

b)  The  polygon  method  accesses  the  area  around  the  target  points  (circles  of

6555 m radius)  or an area in  a cell of a large grid  such as squares ot the standardized

mapping grid. The ratio  scale variables  were calculated as means of cells  falling  in  the

target area. Factor variables were divided into dummy variables, where each new variable

got the value of an area fraction occupied by one level of

the factor. The sum of the new dummy variables for each

factor (geo, mpv or lcv)  is  1.  (e.g.  from the sample  at

Fig.3 just three of 20 dummy variables which originate in

the geological layer have taken a value other than zero).

The  matrix  of  11  calculated  variables  (columns  of

means) and 68 factor replacing ratio-scale variables was

obtained.

Datasets for prediction were accessed in two scale

levels.  In the 1000m grid the prediction was calculated

directly from thematic layers. Values for squares in  the

standardized mapping grid were derived by the polygon approach described above.

The effects of individual predictors were tested in the most accurate scale - a 100m

grid.  Unfortunately these high-precision data are too large for handling with  commonly

used statistical tools (more than 100 000 cases) and so prediction was not performed in

this scale. 
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Fig.3. Circle sample of the geological
layer  around  the  point  of  boxelder
occurrence. A standardized  mapping
grid cell is also displayed.



3.3 Releves analysis methods

3.3  Releves analysis methods
The set of releves was classified by commonly used TWINSPAN software (Hill et

al. 1975) with default options in three dividing levels. More precise classification was not

performed, because high heterogeneity between releves caused unequal divisions with one

or two releves in one class. This was not useful for further analysis. Obtained classes were

used for  easier  interpretation of diagrams from ordination methods.  Canonical analysis

(CA  ter  Braak  1986)  was  used  to  describe  the  species  composition  of  vegetation  at

boxelder wilding  sites.  Analysis  was made in  The  Canoco for Windows and  CanoDraw

software (ter Braak et Šmilauer 2002).

3.4  Exploratory analysis of predictors
The effects of selected individual predictors were tested by t-test comparing means

of  values  in  two  groups  -  presences  sites  and  pseudoabsences sites.  Because  of

geographical relations in data the individual samples were not completly independent and

therefore a  non-random permutation test  was performed - 10,000 permutations  per  set

(Urban 2003). The distribution of values at presence and absence sites is showed in Q-Q

plots.  Dataset for  this initial  exploration was gained from a 100 m grid (1900 selected

cells: 950 presences and 950 absences). All these graphs and tests were realized through

the R v. 1.9.1 software.

3.5  Modeling methods
Before any models  were built  the  correlations  between predictors were  assessed

through the correlation matrix - see appendix, Fig.17.

 All  predictions in  this study were performed in  statistical software R (v.  1.9.1)

using GRASP package, a set of R-language functions developed to facilitate the modeling

and  analysis  of  species  spatial  distributions  (Lehmann  et  al.  2002).  Distribution  was

modeled by GLM and GAM, using a logistic link and a binomial error term. All models

were fitted with the predictor  variables listed in  Tab.2 using a both-directional stepwise

procedure to include only those  variables whose contribution to explained deviance was

significant - tested by χ2 with minimal p-level <0.01. Variable contribution was evaluated

by assessing  the  variation in  residual deviance  as predictor  variables  were sequentially
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3.5 Modeling methods

added and then dropped from the model. Models were selected by following strategies: 

a) with  maximum  predictors,  which  could  significantly  improve  the  explained

deviance, these are marked as gam_b and glm_b.

b) “the minimalistic“ versions of the previous two models were built omitting the

variables,  which contributed to an explained deviance of less than 2%. This is

useful when interpreting models. These models were called gam_m and glm_m.

c) the fifth model was glm with only one  predictor alt -  glm_a, because altitude

had  contributed  about  50%  of  the  explained  deviance  and  there  was  an

assumption only this  predictor is  able  to describe the distribution of boxelder

wilding sites.

These foregoing models were all fitted with data from 1km grid.  Another model

was performed using  the data derived  from standardized  mapping  grid  for  comparison

between different  scales.  This last  one was named  B_gam and is  equivalent  of  gam_b,

because the best explained deviance rule was used for model building.

The six models mentioned above and slav dataset were compared by ROC statistic

and in graph plotting the numbers of true predicted values versus false predicted values.

The  ROC curve analysis is a wide-ranging subject, with many different  methods

for  estimating  and  comparing  curves.  The  implementation in  this  study uses  the non-

parametric  method for constructing  curves as described  in  (Beck et Schulz  1986).  The

Hanley and  McNeil  method (1983) was used for  comparing  curves,  but  if  the models

predictions  are highly  correlated (Pearson's  correlation  coefficient  r  > 0.9)  or the area

under the curve is outside 0.7 to 0.975 the 2 curves can not be compared. The Analyze- it,

v. 1.71 software was used for the above statistics.
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4. Results

4. Results

4.1  TWINSPAN and ordination analysis of releves
Classification  analysis  led  in  five

unequal  groups  of  releves:  marshes,  alluvial

forests, moist meadows, dry meadow, secondary

pine forests (Fig.4). These groups were named

according  to generalized  habitat  characteristics

indicated by species composition. The pattern of

the releves is  better shown in  Fig.5, where also

division-causing species are listed.

The  marsh group  contains  small  area

plots  from  ecotone of  the  ponds  at  two

localities. It is usual that this type of vegetation occurs in small patches around water areas

in the Czech Republic and therefore only a few releves are taken from these sites.

The alluvial forests group contains a wide range of alluvial woody vegetation from

seminatural  bird  cherry-ash  woodland  (Pruno-Fraxinetum)  through  poplar-pedunculate

oak woodland (Querco-Populetum) and white willow woodland (Salicion albae) to the

marginal,  but  intensively  invaded type of alluvial  woodland  in  the Czech republic  the

Pannonian elm-ash  woodland  (Fraxino  panoniceae -  Ulmetum).  The  secondary poplar

woodlands with dominant Populus canadensis are also included in this group.

The  meadows are  divided  into  two specific  groups:  As  is  natural  for  invasive

species , plenty of wilding areas are sites in the different succesional stages from field  or

meadow to forest. Therefore “meadow“ in this study is used in the sense of an abandoned

meadow, where succesion takes place with Acer negundo contribution. A high number of

releve have fallen  into  the group of  dry meadows which are derived from abandoned

fields or mesophile  meadows from the Arrhenatherion union. Such stands are dominated

by  Elymus  repens,  Calamagrostis  epigejos, Arrhenatherum  elatius, and  or  Dactylis

glomerata; and the presence of scrubs, seedlings and juveniles of woody species indicates

the successional change. The second group of meadows are moist meadows derived from

alluvial meadows (Alopecurion union). 
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Fig.4.  Number  of  releves  in  the  TWINSPAN
classification  groups  named  by  stands  they
probably occupy. The moisture gradient is shown
from left to right.
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4.1 TWINSPAN and ordination analysis of releves

The  last  one is  the pine  forests group, which  involves  secondary forests at  dry

stands recently dominated by Pinus sylvestris.

Fig.5 gives  the  best  understanding  of  how  releves  are  distributed  among  the

vegetation types mentioned above. Releves in the diagram are unequally distributed along

three environmental gradients. The most evident one is the moisture gradient from the dry

stands on the left to the marshes on the right. Second gradient is the continuum of “forest

to meadow“ species change, which could be interpreted as gradient of successional stages.

The species composition also indicate that both ruderal and seminatural sites are invaded

by Acer negundo.

17

Fig.5. Ordination diagram from CA. Small signs mark releves, crosses mark species and larger circles
are  centroids  for  groups  obtained  by  classification.  Membership  of  releves  in  groups  is  indicated  by
different colors and shapes of signs.



4.2 Habitats in national vegetation mapping

4.2  Habitats in national vegetation mapping
The habitat classification from Habitat Catalogue of the Czech Republic (Chytrý et

al.  2001)  was  used  in  national  vegetation  mapping.  Habitats  are  determined  by  the

diagnostic and dominant species as well as by a stand‘s characteristics. Such classification

corresponds to the classical phytosociological units at union or association level, or several

associations are grouped into one widely defined unit.

The most often invaded

habitats  are  L2.3  and  L2.4  -

both are  alluvial  forests  mid-

or down-stream of great rivers

(Fig.6). L2.3 signals hardwood

forests  of  lowland  rivers

(Ulmenion Oberdorfer  1953:)

and  L2.4  are  willow-poplar

forests  of  lowland  rivers

(Salicion  albae  Soó  1930).

Descriptions of others habitats

can  be  found  in   Catalog  of

habitats (Chytrý et al. 2001). Note that all four associations of oak-hornbeam woodlands in

the Czech republic are affected by invasion of Acer negundo (L3.1, L3.2, L3.3, L3.4).

There are only seminatural forests described above, while the half of releves from

chapter 2.1 come from non-forest or secondary forest sites.  These sites were in national

vegetation mapping  marked as “X“ habitats.  There were found  more than 50 cases  of

boxelder wilding  in four of them :  X12 stands of early successional woody species,  X7

herbaceous ruderal vegetation outside human settlements,  X8 scrub with ruderal or alien

species, and X9B forest plantations of decidous allochtonous trees.

Acer negundo was found in 998 polygons in the whole Czech republic. Almost two

hundred  of them were  omitted from the  potential  distribution  analysis  because  it  was

impossible to distinguish between trees of wild or cultural origin.
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Fig.6. Habitats the most often invaded by Acer negundo.
Habitats with less then 5 occurrences: K1, K2.2, L1, L3.2, L5.1,
L5.4, L6.4, L7.1, L7.2, L7.4, M1.4, M1.5, M1.7, T1.1, T1.4, T1.5,
T3.5B, V1G.
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4.3 Exploratory analysis of predictors

4.3  Exploratory analysis of predictors
Eleven continual variables have been proved as predictors of Acer negundo wilding

sites. Basic characteristics are listed in Tab.4:

Tab.4.  The basic  characteristics  of the predictors for  sites, where wilding  Acer negundo  was observed.
Names of the predictors are explained in Tab.2.

alt slo swn mat msp drv dtw dci dro drn drw 
Min.: 125 0.010 -1 5.5 450 0 0 0 0 0 0
1st Qu.: 173 0.605 -0.71 8.5 450 0.1 1.2 15.2 0.4 1.1 0.8
Median: 187 1.205 0.14 8.5 550 0.7 2.35 30.8 1 2.5 1.6
Mean: 205.7 1.760 0.04 8.83 523.4 1.71 3.07 27.03 1.2 3.58 2.17
3rd Qu.: 222 2.161 0.75 9.5 550 2.68 4.3 37 1.7 5 3
Max.: 592 15.778 1 9.5 1100 13.8 13.7 70.7 8.5 18.5 8.8

Arithmetic  averages  of  the  subsets  for  presences  and  absences  of  individual

variables  were compared by t-test  and results  were  evaluated by permutation test.  The

averages of presence/absence data subsets were different for almost all of used variables

(Tab.5) and most  of the achieved  t-test statistics  were significantly  (p>0,001) different

from t-statistic acquired in t-test performed on the same dataset with randomly permutated

cases. The only exception was swn, when the difference between averages was significant

only  at  p>0,05  level  (Fig.7

compares  high  significant  mat

and  low  significant swn  as  an

example).  Distributions of values

-  in  particular  presence/absence

dataset  -  are  displayed  in  Fig.8.

Mean  annual  temperature  (mat)

and  mean  annual  sum  of

precipitation  (msp)  show  the

clearest  difference  in  the

distribution  of  values  between

presence  and  absence  data

subsets. Altitude and slope seem

both  to  have  a  very  strong
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Tab.5. Summary of averages between the presence/absence
data subsets and t-test statistic.

variable μ - arithmetic mean t statistic p-value
absences presences

alt 206.00
0 429.000 -41.500 0.000

slo 1.760 4.200 -19.060 0.000
swn 0.043 -0.030 2.340 0.019
mat 8.835 7.485 38.620 0.000
msp 523.42

1 657.366 -28.580 0.000
drv 1.716 3.090 -13.020 0.000
dtw 3.066 4.471 -10.980 0.000
dci 27.028 30.844 -5.260 0.000
dro 1.195 1.426 -4.960 0.000
drn 3.581 4.521 -5.690 0.000
drw 2.168 3.764 -13.960 0.000



4.3 Exploratory analysis of predictors

negative  effect  on  boxelder

occurrence.  The  group  of

“distance-from“  variables

exhibits  trend  of  increasing

difference  with  increasing

distance from the appropriate

landscape  feature.  Note that

distance  from  a  river  (drv)

changes  the  rate  of  this

increasing  trend  at  the

beginning.  Southwestness

(deviance  from  ideal  sun

20

Fig.8. Q-Q diagrams of environmental variables. Two subsets of data (from presence sites and from pseudo
absence sites ) were sorted ascending and plotted against  themselves. Deviation from the diagonal  line
signals the difference in distribution of values in data subsets. The isolated points in the graph for mat and
msp are effects of interval scale for these variables (see Tab.2).
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4.3 Exploratory analysis of predictors

exposure) deviates from both-side equivalence only between upper and down quartiles and

the extremes do not differ.

The factor variables were examined through the proportion of their levels in both

presence  and absence  subsets of data.  First  the bar  plots (Fig.9,  page  21) were drawn

individually for each subset and in the case of derivate dummy variables were compared to

the response versus predictor plots (appendix  Fig.15).  From both approaches  the same

pattern is evident for potential vegetation units. There are two main points in these plots:

alluvial  forests  (1,  5,  6)  evidently  increased  their  proportion  in  the  presence-subset,

21

presences absences

Fig.9. Participation of  individual  factor  levels for  four  used factor  variables.  Situation for  sites with Acer
negundo occurrence is  presented in  left  column and for  sites without it  in right column.  The upper  are
categories  of  potential  vegetation,  middle  land cover  classes,  and down are categories  of  geology.  For
legend on geology or vegetation units see appendix  Tab.7 and  Tab.8. The land cover classes are 1-urban
area, 2-  agriculture landscape, 3- forests, 4- water. Total  number  of cells  was 950 for each presence or
absence subset.
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4.3 Exploratory analysis of predictors

conversely  common  abundant  vegetation  units  such  as  oak-hornbeam  woodland

(Melampyro  nemorosi-Carpinetum),  acidophilous  oak  or  beech  woodlands  (Luzulo

albideae-Quercetum,  Luzulo-Fagetum)  as  well  as  rich  beech  woodlands  (Dentario

eneaphylii-Fagetum)  decrease their  proportion in  the presence subset  (7,18,24,36). Less

evident is difference in land cover, where an increasing trend can be found in bar-plot for

the water category and decreasing in the urban category. This difference is only marginal,

when the proportion of land cover types in the circle samples around points is investigated.

The complementary exchange of dominant landscape features (fields versus forests) can be

seen  much  better  in  response  versus  predictors  plot  (appendix  Fig.16). The  geology

categories exhibit  the same trend as potential vegetation, but are unequally divided into

two groups:

a) with increasing  proportion (27 and 29 - sediments  as quaternary loam,  loess,

sands, gravel/broken stone and tertiary sands and clays) at Acer negundo wilding

sites and 

b) with the decreasing proportion including all other bedrock types. 

Before  models  fitting  the  collinearity  in  datasets  was  investigated  through the

correlation matrix ( Fig.17 in appendix). The strong correlation to altitude was observed in

climatic variables (temperature, precipitation) as well as in “distance-from” variables and

factors.

4.4  GAM and GLM models
Six  models  were  fitted  as  described  in  section  3.5.  They  differ  in  family

(GLM,GAM) and in complexity. All the models show between 49-61 percent of explained

deviance.  Individual  predictors  and  the  number  of  degrees  of  freedom  for  a  spline

smoother if  used - in  the case of GAM - are displayed in  Tab.6.  The most  often used

predictors  were  mpv  (potential  vegetation),  mat  (annual  mean  temperature)  and  alt

(altitude).  Because of the strong correlation among predictors driven by altitude, most of

them were excluded  from models  in  terms  of non  increasing  proportion of explained

deviance.
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4.4 GAM and GLM models

The success of prediction was evaluated by ROC statistic in two scales:

a) in a standardized mapping grid for all six models and the dataset from

another source

b) in 1km grid for five of them excluding Bgam model

ROC  curves  are  shown  in  Fig.10.  They  are  made by  introducing  a  cut-off

somewhere  in  the  range  of  the  output  (0;1)  -  to  classify  continual  probability  into

presences and absences - and compared these to the true situation given by the dataset of

real presences and absences.  Each cut-off corresponds to a point  on a ROC curve.  The

ROC curve has the sensitivity (the probability of successfully predicted presences) plotted
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Tab.6. Summary of fitted models. Models compared in this table are: prediction in the scale of
standardized  mapping  grid  (B_gam),  GAM and  GLM models  in  a grid  1km x 1km (ROC1000) and  their
averiges  for  squares  in  the  standardized  mapping  grid  (ROCbot ),  suffix  _b  means  best  fit  model, _m
indicates minimum predictors model, and _a means model with single predictor alt (for details see section
3.5), in addition the map from Slavík 1997(slav) is compared by ROC. D2 represents proportion of deviance
explained by the model and used predictors are specified with formula indicating when the spline smoother
s() was applied and number of degree of freedom for spline smoother. Models are sorted by increasing
ROCbot.

 Bpred glm_m gam_b glm_a gam_m glm_b slav

D2 [%] 49,4 59,2 60 49,1 57,4 61,1
Predictors s(mmat, 4) mpv mpv alt mpv mpv

s(mmsp, 4) mat s(alt, 3) s(alt, 3) alt
s(mdtw, 4) geo s(mat,3) mat
s(mdci, 4) drw drw
s(mdro, 5) s(dro, 2) geo
s(v7, 4) 
s(v24, 4) 

ROCbot 0,931 0,920 0,916 0,913 0,907 0,889 0,645
Bpred 0,2274 0,1001 0,0515 0,0219 0,0002 <0.0001
glm_m 0,2274 NA NA NA 0,0005 <0.0001
gam_b 0,1001 NA NA NA 0,0023 <0.0001
glm_a 0,0515 NA NA NA 0,0139 <0.0001
gam_m 0,0219 NA NA NA NA <0.0001
glm_b 0,0002 0,0005 0,0023 0,0139 NA <0.0001
slav <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
ROC1000 0,950 0,952 0,926 0,945 0,954
glm_b NA NA <0.0001 NA

gam_b NA <0.0001 NA NA

glm_m NA <0.0001 0,2217 NA

gam_m 0,2217 NA <0.0001 NA

glm_a <0.0001 <0.0001 <0.0001 <0.0001



4.4 GAM and GLM models

vertically  and  the  reversed  scale  of  the  specificity  (the  probability  of  false  predicted

presences) on the horizontal axis. 

All  models  built  in  this  study were similar  in  curve  shape  -  in  addition  ROC

statistics differ only partly (Tab.6). The Bgam model shows the best ROC statistic, which

is significantly better than in the case of gam_m and glm_b. In the scale of the 1km grid

only  the  glm_a  model  exhibited  significant  difference  in  prediction  success.

Understandably,  all  models  were

significantly better in prediction than the

independent  dataset  derived from

Slavík‘s  map.  The  “True/False“  plot  (

Fig.11),  where  the  number  of  true

predicted  versus  the  number  of  false

predicted  values  for  0,5  cut-off  (the

predicted  value  >  0,5  is  predicted

presence and < 0,5 is predicted absence)

is  shown,  can  provide  more  precise

imagination  of  the  difference.  The
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Fig.10. Comparison of models using ROC curves.  The imaginary diagonal line [0,0] [1,1] means the
worst ability of the model to explain observed pattern of boxelder occurrences (e.g. random pattern); the
closer goes the curve to the borders of graph the better predictions model gives. For models descriptions
see Tab.6.

Fig.11.  Number  of  true  classified  absences/
presences  versus  mis-classified  ones  is
plotted. Note the single circle near legend - there
is  three  times  more  false-classified  presences  in
map from Slavik.
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4.4 GAM and GLM models

realized prediction is shown in the maps, where Bpred model (Fig.12) and gam_b model

(Fig.13) are shown.  The gam_b model was chosen for the demonstration although the

glm_b model exhibited a better fit  to real data, because in  areas outside the boxelder‘s

range  the  prediction  from the glm_b  model  did  not  seem as  precise  as  from gam_b.

Predictive maps for all fitted models can be found at the end of  appendix.
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Fig.12. Prediction  in  the  standardized  mapping  grid  scale. The  white  squares  means  zero
probability of Acer negundo wilding and the black ones the probability greater than 0,7. Whole scale is 0-
0,1-0,3-0,5-0,7-1.



Fig.13. Prediction in a 1 km grid using the gam_b model. The blue areas are sites with zero probability of Acer negundo wilding, the red are sites with very
high probability. The white areas are NA cells originated from levels of mpv (units of potential vegetation) which were not included in the dataset for model fitting.



4.5 Applied prediction

4.5  Applied prediction
Predictive mapping can be realized for more, different purposes including e.g.  the

management planning in Protected Landscape Areas (PLA). The mean probability of Acer

negundo wilding was calculated for each PLA in the Czech Republic as an example of the

use for the methods discussed above. The probability layer for calculation was modeled by

the gam_b model,  but all the types of models used in this study would exhibit  the same

results.
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Fig.14.  Probability  of  Acer  negundo  wilding  in  Landscape  Protected  areas  in  the  Czech
republic. Only averages above 0,01 are shown.

0,92

0,75

0,7

0,54

0,39

0,27

0,19

0,14

0,13

0,13

0,1

0,1

0,09

0 0,2 0,4 0,6 0,8 1

Palava

Litovelske Pomoravi

NP Podyji

Poodri

Cesky kras

Bile Karpaty

Ceske stredohori

Moravsky kras

Cesky raj

Labske piskovce

Kokorinsko

Krivoklatsko

Trebonsko

Blanik

Blansky les

Zelezne hory

Luzicke hory

mean of Acer negundo  wilding probability



5. Discussion

5. Discussion

5.1  Habitats
The acquired results in habitat  preference of wilding  Acer  negundo agree with a

few available information sources.  Slavík (1972) reports naturalization in alluvial forests

and riparian scrubs in the neighborhood of great rivers. The same author notices in  Flora

of the Czech Republic  (vol.  5, 1997) wilding of boxelder at railway stations, abandoned

courts and gardens. Such examples were documented by phytocenological releves and on

this basis Acer negundo can be counted among weed trees. If its strong regeneration ability

is considered (Maeglin et Ohmann 1973), boxelder could be posited as very problematic

and reduction-resistant weed.

In the  releve  collection  there  is  evidence  for  wilding  Acer  negundo in  ruderal

vegetation.  This  happens  often  in  the  presence  of  Calamagrostis  epigejos,  which  is

commonly regarded as a succession slowing element  (Prach et al.  2001).  Acer negundo

seems to deal with such impact  of competitive  grasses which is  possibly explained  by

specific  bitter  substances  involved  in  its  vegetative  organs.  These  substances  may  be

effective anti-herbivorous protection. Several  Acer negundo mono-dominant  stands were

observed (and noticed in  releves)  in  abandoned meadows and on land  waiting  for new

urban development,  often containing  very few understorey species.  Even though this  is

common in even-aged young stands, the litter of boxelder should also be investigated for

any potential allelopathic substances (reported in  Kolesnichenko et Spakhov 1969). The

question is, in which direction the succession of such places will continue.

The new  boxelder wilding habitat in  the Czech Republic  is  reported from recent

national  vegetation mapping  -  oak-hornbeam woodlands  (un.  Carpinion).  At  least  one

occurrence  of  spontaneous  spreading  of  boxelder  was  found  in  each  of  four

phytogeographically differentiated associations from the Carpinion union. The horn-beam

woodlands invaded by boxelder have been reported in Poland (Tokarska-Guzik 2003). The

increasing number  of standardized mapping grid  squares with  Acer negundo occurrence

and newly invaded habitats suggest that the process of invasion is  still  continuing. This

consequently leads to following conclusion: The predicted probabilities are in consistence

with recently known boxelder wilding sites and so the sites with high probability of the
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boxelder  wilding  can  be  regarded  as  predicted  correctly.  Contrariwise,  sites  with  low

predicted probability are not so clearly estimated and the probability can increase, if only

the early or middle phase of invasion is continuing.

5.2  Predictors
The distribution of values shows clear trends in  all  investigated variables.  Clear

positive  correlation  can be  noted in  cases  of mean  annual  temperature and  slightly  in

southwestness.  Contrary negative correlation is  evident  in elevation, slope, mean annual

sum of precipitation, distance to river and general in  distance to man-related landscape

features (in descending order: drw, dtw, dro, dci, drn). One can argue that the effect of the

presence-sampling strategy can decrease averages of dro and drn and also of dci and dtw

but  on  the  contrary the  most  out-of-the-way areas  are  the  most  valuable  for  nature

conservation and so the best proved by the national mapping.

While  elevation has  shown the best  predictive  power, the other predictors were

found redundant  for model with only one exception:  potential vegetation units.  This  is

natural because all features investigated for distance to  Acer negundo  wilding  sites are

landscape  units  situated in  low altitude.  Moreover,  the netting  effect  in  smaller  scale,

common to all these landscape features, decreases their effects in country level modeling.

Such  predictors  are  much  better  when  in  greater  scale  are  used  (Urban  2003).  The

surprising  thing was that distance to a river,  although it  is  clear relevant  predictor (see

natural habitat for  Acer negundo in section 1.4), was cut out from all built  models.  This

can be explained through the use of potential vegetation units, of which the alluvial forests

are more acurate predictors. While the drv increases linearly with distance to a river, the

vegetations types reflect alluvium borders, which is naturally much better for modeling the

probability of any alluvial plant occurrence. The second reason could be the scale of the 1

km grid, while more than half occurrences were found closer than 1km. Here can also be

noted that  the distance  to  a  river  can be  used,  if  spreading  rather  than distribution  is

modeled.

The next  important problem in deriving “distance from“ variables is fault  in data

from marginal  border-close areas. Features such as railways and roads can be closer to

sites behind the border, but in our data layers this information is not included.
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The role of climatic  variables is  also complicated, because of altitude-dependent

interpolation used for their calculation from individual climatic stations. For example, the

heat-islands around cities are ignored in such layers, even though they are often stressed in

plant invasion literature (Gilbert 1989). More precise temperature layer could be obtained

from remote sensing, but such data were not available.  Lehmann et al. (2002) show that

the  seasonal  characteristics  and  hydrological  related  variables  can  contribute  to  more

precise prediction due to the closer relationships to plant physiology.

Because of correlation among variables it is not legitimate to interpret results of the

t-test as an evidence of causality,  but  they are sufficient  for  imagining  the relationship

between variable values and occurrence of wilding Acer negundo. 

5.3  Model types
All the models exhibit  similar  accuracy of prediction when the same dataset was

used for model fitting and model evaluation. But if predicted surfaces are compared larger

differences  are evident.  The  GLM based  models  overestimate  the probability  of  Acer

negundo wilding  for  some  rare  types  of  geology and  therefore  islands  of  very  high

probability occur in the middle of large zero areas (see glm_b model map in appendix).

Other differences originate in other predictor selection. Before realizing a predictive map

using this study,  a calibration of  the selected model should be performed. Because it is a

time-consuming process it was not included here, but together with appropriately adjusted

selection  of  pseudoabsences  such  practice  can  improve  the  predictive  surface  layout

(Guisan and Zimmerman 2000).

GRASP is one of predictive systems based on logistic regression and thus needs

information about absence sites for successful prediction. Sampling pseudo-absences can

bring uncertainty into estimated values.  Another method can be used for the same goal

without absence data: ENFA (Hirzel et al.  2002) based on habitat  suitability  modeling.

However  Zaniewski et al.  (2002) show GAM model with pseudo-absences which gives

closer result to GAM with true absences than the ENFA approach.

30



5.4 Prediction

5.4  Prediction
The resulting prediction maps shows the climatic equivalent  of recently boxelder

wilding sites rather than all potential sites of boxelder occurrence. As mentioned above the

oak-hornbeam woodlands are newly invaded by Acer negundo and this can continue into a

more  wide-spread  invasion.  The  large  ecological  valence  of  this  tree  enables  such  a

process namely if this species was observed in 2300 m altitude (Maeglin et Ohmann 1973)

in natural areal (of course in closed riparian bush wood).

The white cells  in predictive maps are caused by missing levels for mpv factor in

the  dataset  used  for  model  fitting.  E.g.  category 49  -  complex  of  submontane  Pinus

rotundata and  P. sylvestris mires  is  small-area unit  from South Bohemia  and was not

sampled in random pseudoabsence sampling. To avoid this mistake the stratified random

sampling should be used for pseudo-absence data sampling (Urban 2003).
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6. Conclusions

6.1  Habitats
Before known habitats of Acer negundo wilding were confirmed and the new ones

were observed. This  can indicate the invasion process is  not yet  finished  in  the Czech

Republic.

6.2  Predictors
Elevation can explain  most  of the boxelder  wilding  site  distribution.  It is  not  a

primary  predictor,  but  it  is  highly  correlated  to  the  direct  predictor  -  mean  annual

temperature. In our case can be achieved much more accurate results, because of the higher

accuracy of our elevation data, than our temperature data. 

Other used predictors can contribute to precise prediction, but also can bring more

bias. The selection of predictors group is target-area specific and such should be done with

respect to the use of results. Which of variables are used alternate with different types of

model technique (GAM versus GLM in this study).

6.3  Model types
GLM and  GAM were used  in  this  study and  GAM seems  be  more  useful  for

predicting outside the range of presences dataset. When compared goodness of fit  among

these techniques with the same dataset which was used for model fitting no significant

difference was observed.

6.4  Scales
Also  different  scale was used for prediction (with different  approach to variable

derivation),but conversion of values predicted in 1km grid scale to 10km grid scale did not

brought any better results. Conclusion can be that the prediction should be undertaken in

each resolution in which predicted data will be used.
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8.1  Organisations:
Czech National Phytosociological Database, http://www.sci.muni.cz/botany/database.htm
AOPK CR, http://www.nature.cz/
Natura2000, http://www.natura2000.cz/
ArcData, Praha, DEM of the Czech Republic http://www.arcdata.cz/data/dmr

8.2  Software:
The R Project for Statistical Computing http://www.r-project.org/
GRASS GIS http://grass.itc.it/index.php
Analyse it (ROC analysis) http://www.analyse-it.com/default.asp
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Tab.7. Describtion of the categories in potencial vegetation map (Neuhäuselová 1998)

n. description of potential vegetation type
1 Bird  cherry-ash  woodland  (Pruno-Fraxinetum  Oberdorfer  1953),  partly  in

complex with adler carrs (Alnion glutinosae Malcuit 1929).
2 Bird cherry-oak and -adler  woodland (spol.  Quercus robur-Padus avium,  spol.

Alnus glutinosa-Padus avium) with Carex brizoides, partly in complex with adler
carrs (Carici elongatae-Alnetum Schwickerath 1933) and reed swamps and tall-
sedge communities (Phragmito-Magnocaricetea)

3 Spruce-alder woodland (Piceo-Alnetum Rubner ex Oberdorfer 1957).
4 Poplar-pedunculate  oak  woodland  (Querco-Populetum  Neuhäuslová-Novotná

1965), partly in complex with elm-pedunculate oak woodland (Querco-Ulmetum
Issler 1926).

5 Elm-pedunculate oak woodland (Querco-Ulmetum Issler 1926).
6 Panonian elm-ash woodland (Fraxino pannonicae-Ulmetum Soó in Aszód 1936

corr.  Soó  1963)  partly  in  complex  with  poplar-ash  woodland  (Fraxino-
Populetum Jurko 1958).

7 Oak-hornbeam woodland with Melampyrum nemorosum (Melampyro nemorosi-
Carpinetum Passarge 1957).

8 Lime-oak woodland with Betula pendula (Tilio-Betuletum Passarge 1957).
9 Panonian  oak-hornbeam  woodland  with  Primula  veris  (Primulo  veris-

Carpinetum Neuhäusl et Neuhäuslová ex Neuhäuslová-Novotná 1964).
10 Carpathian  oak-hornbeam  woodland  with  Carex  pilosa  (Carici  pilosae-

Carpinetum Neuhäusl et Neuhäuslová 1964).
11 Lime-rich oak-hornbeam woodland (Tilio-Carpinetum sensu Traczyk 1962).
12 Lime-pedunculate  oak  woodland  with  Stellaria  holostea  (Stellario-Tilietum

Moravec 1964).
13 Scree and ravine woodland of colline to montane sites. (Aceri- Carpinetum Klika

1941,  Lunario-Aceretum Schlüter  in  Grüneberg et  Schlýter  1957,  Mercuriali-
Fraxinetum [Klika 1942] Husová 1982, Scolopendrio-Fraxinetum Schwickerath
1938).

14 Lime-beech woodland  with Tilia  platyphylos  (Tilio  platyphylli-Fagetum Klika
1939).

15 Lime-beech woodland with Tilia  cordata (Tilio  cordatae-Fagetum Mráz  196O
em. Moravec 1977).

16 Beech woodland with Melica uniflora (Melico-Fagetum Seibert 1954).
17 Sedge-rich  beech  woodland  with  Carex  pilosa  (Carici  pilosae-Fagetum

Oberdorfer 1957).
18 Beech  woodland  with  Dentaria  enneaphyllos  (Dentario  enneaphylli-Fagetum

Oberdorfer ex W. et A. Matuszkiewicz 196O).
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n. description of potential vegetation type
19 Carpathian  beech  woodland  with  Dentaria  glandulosa  (Dentario  glandulosae-

Fagetum Matuszkiewicz ex Guzikowa et Kornas 1969).
20 Beech woodland with Festuca altissima (Festuco altissimae-Fagetum Schlüter in

Grüneberg et Schlüter 1957).
21 Beech woodland with Viola reichenbachiana (Violo reichenbachianae-Fagetum

Moravec 1979).
22 Beech  woodland  with  Cephalanthera  sp.  (Cephalanthero-Fagetum Oberdorfer

1957).
23 Silver  fir  woodland  with  Sanicula  europea  (Saniculo  europaeae-Abietetum

Husová [1968] nom. nov.).
24 Woodrush-beech woodland (Luzulo-Fagetum Meusel 1937).
25 Spruce-beech woodland (Calamagrostio villosae-Fagetum Mikyška 1972).
26 Waterlogged  pedunculate  oak-beech  woodland  with  Carex  brizoides  (Carici

brizoidis-Quercetum Neuhäusl in Mikyška et al. 1968)
27 Silver  fir  woodland  with  Deschampsia  flexuosa  (Deschampsio  flexuosae-

Abietetum Husová 1968).
28 Oak woodland  with Lathyrus  versicolor  and/or  Buglossoides  purpurocoerulea

(Lathyro  versicoloris-  Quercetum  pubescentis  Klika  [1928]  1932,  Torilido-
Quercetum Blažková 1997).

29 Oak  woodland  with  Prunus  mahaleb  and/or  Cornus  mas  (Pruno  mahaleb-
Quercetum  pubescentis  Jakucs  et  Fekete  1957,  Corno-Quercetum  Máthé  et
Kovács 1962).

30 Undeterminated basiphilous thermophilous oak woodland (Brachypodio pinnati-
Quercetum Klika 1953 nom. inv. aj.).

31 Oak  woodland  on  loess  with  Quercus  petraea,  Q.  pubescens,  Q.  robur
(Quercetum pubescenti-roboris [Zólyomi 1957] Michalko et Džatko 1965).

32 Subcontinental pedunculate oak woodland with Carex fritschii (Carici fritschii-
Quercetum roboris Chytrý et Horák 1997).

33 Oak woodland with Potentilla alba (Potentillo albae-Quercetum Libbert 1933).
34 Oak woodland with Sorbus  torminalis  and Vincetoxicum hirundinaria  (Sorbo

torminalis-Quercetum Svoboda ex Blažková 1962).
35 Oak woodland with Asplenium cuneifolium on serpentine substrate (Asplenio

cuneifolii-Quercetum petraeae ).
36 Woodrush  oak  and/or  silver  fir-oak  woodland  (Luzulo  albidae-Quercetum

petraeae Hilitzer 1932, Abieti-Quercetum Mráz 1959).
37 Oak  woodlalnd  with  Molinia  coerulea  (Molinio  arundinaceae-Quercetum

Neuhäusl et Neuhäuslová-Novotná 1967).
38 Pine-oak woodland with Vaccinio  vitis-idaea (Vaccinio vitis-idaeae-Quercetum

Oberdorfer 1957).
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n. description of potential vegetation type
39 Pine-oak  woodland  with  Festuca  ovina  (Festuco  ovinae-Quercetum  roboris

sensu F. Őmarda 1961).
40 Pine  woodland  with  Thlaspy  montanum  on  serpentine  substrate  (Thlaspio

montani-Pinetum sylvestris Chytrý in Chytrý et Vicherek 1996).
41 (Sub)montane  spruce-pine  and  spruse  woodland  on  stony  substrate  (Betulo

carpaticae-Pinetum Mikyška 1970, Anastrepto-Piceetum Stöcker 1967).
42 Other  acilophilous  pine  woodland  (Dicrano-Pinion  [Libbert  1933]

Matuszkiewicz 1962 excl.  Betulo carpaticae-Pinetum Mikyška 197O, Vaccinio
uliginosi-Pinetum sylvestris Kleist 1929).

43 Spruce woodland with Calamagrostis  villosa (Calamagrostio villosae-Piceetum
Hartmann in Hartmann et Jahn 1967).

44 Waterlogged spruce woodland with Bazzania  trilobata (Mastigobryo-Piceetum
[Schmid et Gaisberg 1936] Braun-Blanquet, Sissingh et Vlieger 1939), partly in
complex  with  Sphagnum-rich  spruce  woodland  (Sphagno-Piceetum  sensu
Sofron 1981).

45 Spruce  woodland  with  Athyrium  distentifolium  (Athyrio  alpestris-Piceetum
[Hartmann 1959] Hartmann et Jahn 1967).

46 Complex  of  Pinus  mughi  communities  and  alpine  vegetation(Pinion  mughi
Pawlowski in  Pawlowski,  Sokolowski et Wallisch  1928)Pinus sylvestris-mires
(Pino  rotundatae-Sphagnetum Kästner  et  Fl÷ssner  1933 corr.  Neuhäusl  1969,
Eriophoro  vaginati-Pinetum  sylvestris  Hueck  1931  em.  Neuhäusl  1984),
Vaccinio uliginosi-Pinetum sylvestris Kleist 1929).47 Complex  of  sedge
and sedge-moss communities on minerotrophic mires (Caricetalia  fuscae Koch
1926).

48 Complex  of  sedge-Sphagnum  communities  on  minerotrophic  mires
(Scheuchzerietalia  palustris  Nordhagen  1936  excl.  Leuko-Scheuchzerion
palustris Nordhagen 1943).

49 Complex of submontane Pinus rotundata- and 
50 Complex of montane raised bogs (Sphagnetalia medii Kästner et Flössner 1933

excl.  sub  49),  partly  with  Pinus  mugo  agg.  and/or  Sphagnum-rich  spruce
woodland (Sphagno-Piceetum sensu Sofron 1981).

51 Comlex of succesional stages on anthropogenic sites (open-cast coal mines etc.)
52 Water (damms, flooded areas)
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Tab.8. Describtion of the categories in geological theme

n. describtion
10 monotonous serie of Moldanubicum (mica shist-gneiss, paragneiss,

migmatite)
11 variegated serie of Moldanubicum (mica shist-gneiss, paragneiss-migmatite

with intercalated beds of limestone, erlan, quartzite, graphite and amphibolite)
12 Proterozoic Assynt folded rocks, with a differently strong Variscan reprocess

(shale, phyllite, mica shist-paragneiss)
13 orhogneiss, granulite and diatexite in Moldanubicum and Proterozoic 
14 ultrabasic rock in Moldanubicum and Proterozoic 
15 Assynt granitoit (granite, granodiorite)
16 Palaeozoic folded and metamorphosed rock (phyllite, mica shist)
17 Palaeozoic folded and unmetamorphosed rock (shale, wacke, quartzite,

limestone)
18 Proterozoic-Palaeozoic volcanic rock partly metamorphosed(amphibolite,

diabase, melaphyre, porphyry)
19 granite (granite series) 
20  granodiorite-diorite (tonalite series) 
21 dark granodiorite, syenite (durbachite series)
22 diorite and gabbro, Assynt and Variscan 
23 Mesozoic rock Alpine folded (sandstone, shale) 
24 Tertiary rock Alpine folded (sandstone, shale) 
25 Anthracolithic rock (sandstone, conglomerate, claystone) 
26 Mesozoic rock (sandstone, claystone) 
27 Tertiary rock  (sand, clay) 
28 Teriary volcanic rock (basalt, phonolit, tuff) 
29 Quaternary (loam, loess, sands, gravel/broken stone) 

42



9. Appendix

Tab.9. Names of species used in ordination diagram.

abbr. Latin name
AcerNegu Acer negundo
AegoPoda Aegopodium podagraria
AchiMill Achillea millefolium agg.
AlnuGlut Alnus glutinosa
AlopAequ Alopecurus aequalis
AlopPrat Alopecurus pratensis
ArrhElat Arrhenatherum elatius
ArteVulg Artemisia vulgaris
BideTrip Bidens tripartitus
BracSylv Brachypodium sylvaticum
CircLute Circaea lutetiana
CirsArve Cirsium arvense
CypeFusc Cyperus fuscus
ElymRepe Elymus repens
FestGiga Festuca gigantea
FraxExce Fraxinus excelsior
GeumUrba Geum urbanum
GlecHede Glechoma hederacea
LamiMacu Lamium maculatum
LysiNUmm Lysimachia nummularia
LythSali Lythrum salicaria
OenaAqua Oenanthe aquatica
QuerPetr Quercus petraea agg.
QuerRobu Quercus robur
SaliAlba Salix alba
TaraSect Taraxacum sect. Ruderalia
TiliCord Tilia cordata
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Fig.15. Response versus predictors are plotted and the smoothing function 'spline' is applied (4 degree
of freedom) to the relationships between the responses and predictors. The names of variables are listed in
Tab.2.
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Fig.16. Response versus predictors are plotted and the smoothing function 'spline' is applied (4 degree
of freedom) to the relationships between the responses and predictors. l1-l4 represent lcv factor levels, v7,
v24, v36 are selected levels from map of potential elevation. The names of variables are listed in Tab.2.



Fig.17. Correlation matrix of predictors in the 1km grid scale. Coefficient of correlation is shown in left upper corner of each graph. The names of variables are listed in
Tab.2.
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