
 

 

 

Univariate Methods 
 

 

 

 

 

 

 

Warning:  in many examples the number of replications is desperately low. This is 

just to keep the examples simple and small. In real problems, it is much better to 

have more replications. Also, majority of examples are imaginary, so the conclusions 

drawn are sound according to the data presented, but can contradict to the reality. 



 2 

Goodness of fit (2-test) 
 

Example1: The expected Mendelian ratio in the second filial generation was 3:1. We 

observed 70 plants with dominant phenotype and 10 with recessive phenotype. Is there a 

significant difference between expected and observed ratio? 

 

Put observed values to one variable (e.g. OBS), expected values to the other one (EXP). 

Use Statistics > Nonparametrics; ask for Observed versus expected X. You will get: 

 

Observed vs. Expected Frequencies (Spreadsheet1)

Chi-Square = 6.666667 df = 1 p = .009824

Case

observed

OBS

expected

EXP

O - E (O-E)**2

/E

C:     1

C:     2

Sum

70.00000 60.00000 10.0000 1.666667

10.00000 20.00000 -10.0000 5.000000

80.00000 80.00000 0.0000 6.666667  
 

The result of the test is significant, so we reject the null hypothesis that the observed 

frequencies come from the Mendelian 3:1 ratio, usually, we would write that “The 

observed frequencies differ significantly from the expected 3:1 ratio (χ
2
=6,667, df=1, 

p=0,0098 [alternatively p<0,01]). 

 

 

Example 2: Comparison with Hardy-Weinberg equilibrium: 

 

Observed numbers of plant of genotypes in a sample from a population were (obtained by 

molecular analysis): 

AA  20 

Aa 40 

Aa 10 

 

First, estimate p(A) – i.e. the frequency of A allele in the population - from data: (2x20 + 

40)/180 = 0.444 (90 individuals have 180 alleles) 

Expected relative frequencies are p
2
, 2pq, q

2 

Expected number of AA is 0.444
2 

x 90 = 17.777 

Etc. 

Note, df = number of categories – 1 – number of parameters estimated from the data (we 

estimated p) =  

3 – 1 – 1 = 1 

 

The number of df differs from that automatically provided by the program. You have to 

find the significance using Probability calculator in Statistics. 

 

Contingency tables 
 



 3 

Example 3: Effect of chilling on seed germination: 

 

Four sets of  50 seeds were stored at four temperatures for 3 months: 20 
o
C, 4 

o
C, -4

 o
C 

and –20 
o
C. The germination was 30%, 40%, 60% and 60%. Each seed was treated so 

that it can be considered independent observation. The contingency table is (number of 

cases, not percentages): 

 

Chilling type Germinated Not germinated 

T=20 (chilling=1) 15 35 

T=4 (chilling=2) 20 30 

T=-4 (chilling=3) 30 20 

T=-20 (chilling=4) 30 20 

 

 

Enter data as (file chilling.sta): 

 CHILLING GERMINAT   FREQUE 

1 1.000  1.000  15.000 

2 1.000  0.000  35.000 

3 2.000  1.000  20.000 

4 2.000  0.000  30.000  

5 3.000  1.000  30.000 

6 3.000  0.000  20.000 

7 4.000  1.000  30.000 

8 4.000  0.000  20.000 

 

Use Statistics > Basic statistics > Tables and Banners  

First, use FREQUE as weight, then, in the panel specify using Specify tables specify the 

grouping variables (i.e. CHILLING and GERMINAT) and in Options check Expected 

frequencies and Pearson & M-L Chi-square and ask for Detailed two-way tables.  

You will get: 

 

Statistics: CHILLING(4) x GERMINAT(2) (CHILLING.ST A)

Statistic Chi-square df p

Pearson Chi-square

M-L Chi-square

13.53383df=3 p=.00361

13.76873df=3 p=.00324  
 

M-L is maximum likelihood Chi-square (G-test). 

 

The null hypothesis, that the germination rate is independent of the chilling treatment was 

rejected (for both the tests, the p-values is smaller than 0.05, in fact, smaller than 0.01). 

 

 

Other examples: 

 

Example 4:  100 plots, 1m
2
 each were randomly located in a plot and the occurrence of 2 

species (Cirsium and Agropyron) was observed. In 20 plots, both species were found, in 
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10 plots Cirsium only, in 20 plots  Agropyron only, and in 50 plots none of the two 

species. Is the species’ occurrence  independent? (Possible ecological explanations: 

Passive and active associations). 

 

Example 5:  50 male and 50 female plants of a dioecious species were marked in the field 

at the start of vegetation season. At the end of the season it was found that 40% of male 

plants are still alive, whereas only 22% of female plants. Is the survival rate of male and 

female plant different? 

 

 

Comparison of two means 
 

Note: two independent samples can be compared either by the t-test for independent 

samples or by one way ANOVA with two categories (the results are identical). In the t-

test, we can have the one-sided (one-tailed) null hypothesis. (two-tailed H0: 1=2; one-

tailed H0:12 or 12). For both methods, we expect homoscedascity (variances are 

equal). For t-test, we have the possibility of version with separate estimates of variance 

for each sample. The decision about one- or two-tailed test depends on our a-priori 

knowledge and intention of the test and has to be done before carrying out the test. Note: 

The other assumption is that the data come from a normal distribution. Nevertheless, 

what is really important is that the means have normal distribution. Consequently the test 

is very robust when the sample-size is large (follows from Central limit theorem). 
 

Two independent samples (Control (open) vs. treatment (filled)): 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 6: Let’s compare the length of petals in two Ranunculus species  (Ranunculus 

acer a R. nemorosus).  Five independent observations  (Should be probably more!) are 

available in each sample (what is random independent observation and how to get it – 

relation of sample and population).   

The values should be entered as follows 
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All the response values are in one variable (length) and the other variable (species) is 

classification of cases (tells us, to which species the observation belongs): (data are in the 

file Ranunculus.sta] 

species Length 

ac 5 

ac 6 

ac 4 

ac 6 

ac 5 

ne 7 

ne 8 

ne 9 

ne 6 

ne 8 

Classification variable can be also a numeric one (say, 1 instead ac and 2 instead of ne) 

Use Basic statistics and t-test for independent samples by groups, species is the 

Grouping variable, Length is the Response.  You will get results of t-test, and also of the 

F-test comparing the variances 

 

T-tests; Grouping: species (Ranunculus.sta)

Group 1: ac

Group 2: ne

Variable

Mean

ac

Mean

ne

t-value df p Valid N

ac

Valid N

ne

Std.Dev.

ac

Std.Dev.

ne

F-ratio

Variances

p

Variances

Length 5.200000 7.600000 -3.79473 8 0.005276 5 5 0.836660 1.140175 1.857143 0.563500

 

So, the differences in length are significant, and variances are not 

significantly different (which is fine, because this is the assumption of t-

test) -  otherwise, we would select the Option and ask for separate variance 

estimates. 
 

If you are interested in one-tailed test, simply calculate P (one-tailed) = P(two-tailed)/2. 

(!!if the difference against the null hypothesis goes in the direction of alternative 

hypothesis). 

 

Example 7: 

 Compare weight of seeds of two species (ten independent observations available for each 

species).  

Weghts: 

Species A: 15, 16, 17, 15, 16, 14, 15, 16, 19 , 19 

Species B: 14, 13, 15, 13, 16, 14, 12, 11, 13, 15 

Calculate the t-test, P-value for two-tailed test, SD, SEM (explain the difference), 

confidence interval, plot multiple box and whisker-plot. 
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Two dependent samples (paired t-test) 

Example 8. Five blocks (the experiment was carried out in Czech republic, so the block is 

called blok) were diveded in two half, one fertilized (Nitrogen - N) and other was control 

(H).:  

 

 

Biomass values in particular plots: 

Block 1 2 3 4 5 

Fertilized 23 25 36 19 22 

Unfertilized 20 24 33 18 21 

Does fertilizer have any effect? (Consider one-tailed test, when we want to test whether 

nitrogen is a limiting factor in the plot) 

The data are entered in two variables. one variable for fertilized and one for unfertilized 

plot, each block is a case }so no need to have a variable for case). Ask for t-test for 

dependent samples. Results: t = 3.674235, df=4, p=0.021312 

 

Other examples of paired observations: Comparison of bark thickness on northern and 

southern site of a tree: for each tree you have two values – one for southern, one for 

northern. 

 

Comparison of students’ weight before and after visit at parents’ house. 
 

 

Non-parametric counterparts: 
 

t-test for independent samples: Mann-Whitney U test (in Statistica Nonparametrics > 

comparing two independent samples, response and groupins as for t-test, ask for  
Mann-Whitney U test – with Ranunculus.sta data, you will get . 
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Mann-Whitney U Test (Ranunculus.sta)

By variable species

Marked tests are signif icant at p <.05000

variable

Rank Sum

ac

Rank Sum

ne

U Z p-value Z

adjusted

p-value Valid N

ac

Valid N

ne

2*1sided

exact p

Length 16.00000 39.00000 1.000000 -2.29783 0.021572 -2.34078 0.019244 5 5 0.015873

 

Paired t-test (t-tesp for dependent samples) – Wilcoxon matched pairs test in 

Nonparametrics/- ask for two dependent variables – data are entered exactly as for 

paired t-test 

 

Take care, when using the non-parametric test, you either test the hypothesis, that the 

distributions are identical (then there are no assumptions about distributions), or you test 

equality of means (or medians), but then you assume, that the distribution shape is 

identical, and test, whether the distributions differ in location. 
 

Comparison of more than two means – ANOVA 

ANOVA for two groups and t-test are identical; multiple t-test is not advisable, because 

the probability of Type I error is  in each of the t-tests, and consequently, probability of 

Type I error in at least one of the particular test is very high – this can lead to “statistical 

fishing”. 
 

One-way ANOVA 
(completely randomized design) 

 

Example 9: Effect of soil type on plant height was tested in a pot experiment. 5 plants 

were grown in sandy soil, 5 plants in clay soil, and 5 plants in a peat soil. The final 

heights are in a table (in a way, how they should be entered for Statistica (i.e. grouping 

variable [= soil] and response [=height]) – file soiltype.sta: 

(Note: soil type is a factor with fixed effect.) 

CASE  SOIL HEIGHT 

1 s 15.000 

2 s 17.000 

3 s 14.000 

4 s 16.000 

5 s 17.000 

6 c 13.000 

7 c 12.000 

8 c 11.000 

9 c 13.000 

10 c 15.000 

11 p 11.000 

12 p 12.000 

13 p 10.000 

14 p 9.000 

15 p 10.000 
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Use Statistics > ANOVA/MANOVA > One way ANOVA. 

In very similar manner, you can use Statistics > Advanced linear/nonlinear models > 

General linear models   -  and then ask for One way ANOVA there. Its slightly longer, but 

you have more options there. 

 

In the panel (click Variables): 

Independent (factors): soil 

Dependent: Height 

 

Press OK, and in the next panel ask for All effects 

 

You will get the ANOVA result table: 
 

Univariate Tests of Significance for HEIGHT (SOILTYPE.STA)

Sigma-restricted parameterization

Effective hypothesis decomposition

Effect

SS Degr. of

Freedom

MS F p

Intercept

SOIL

Error

2535.000 1 2535.0001462.5000.000000

73.200 2 36.600 21.115 0.000117

20.800 12 1.733

 

  

       
       
       

       
 

As p=0.000117, we can conclude that the effect of soil type is highly significant.  

Note that test of intercept has here no real meaning – in fact, it test the hypothesis, that 

the mean height of all the plants over all the groups is zero, which is a nonsense. 

 

Reasonable graphical presentation can be obtained by All effects/Graphs 
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SOIL; LS Means

Current ef f ect: F(2, 12)=21.115, p=.00012

Ef f ectiv e hy pothesis decomposition

Vertical bars denote 0.95 conf idence interv als
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For multiple comparisons ask More results, Post hoc comparisons (unless you have a  

priori planned ones). Tukey is recommended. 

 

Other examples: 

 

Random factor (note that for the one-way ANOVA, the results are the same for fixed and 

random factors): Individuals from three clones of Festuca rubra were vegetatively 

propagated under identical conditions. Then, 5 tillers from each clone were grown, each 

in a separate pot, for 5 weeks and the number of tillers was calculated to find, whether 

there is effect of genetic variability  (i.e. the difference between clones) on tillering. 

Results (number of additional tillers from each of original 5 tillers): 

Clone 1: 6,4,5,8,6 

Clone  2: 2,3,2,4,3 

Clone 3: 4,6,5,7,4 

 

Probably, the multiple comparison is meaningless. 

Probably, the square-root transformation can be useful.  

When to use the log-transformation? When the data are log-normal, sd is linearly 

dependent on mean and effects are multiplicative. 
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Non-parametric counterpart: Kruskal-Wallis ANOVA (or median test).  Use 

procedure Nonparametrics/comparing multiple independent samples., Kruskal-

Wallis. Panel is similar to parametric test. 
 

 

Two-way analysis of variance: factorial experimental design 
 

Example10:  

Effect of nitrogen and watering on plant height was studied in a pot experiment. Two 

levels of each factor were applied (normal – 0, increased – 1) 

Enter each of independent factors into one variable (file fertwate.sta) 

 

  Nitrog      Water     Height 

1 0.000  0.000  23.000 

2 0.000  0.000  25.000 

3 0.000  0.000  24.000 

4 0.000  0.000  26.000 

5 0.000  0.000  19.000 

6 0.000  1.000  32.000 

7 0.000  1.000  37.000 

8 0.000  1.000  34.000 

9 0.000  1.000  35.000 

10 0.000  1.000  36.000 

11 1.000  0.000  29.000 

12 1.000  0.000  28.000 

13 1.000  0.000  29.000 

14 1.000  0.000  31.000 

15 1.000  0.000  30.000 

16 1.000  1.000  57.000 

17 1.000  1.000  59.000 

18 1.000  1.000  62.000 

19 1.000  1.000  58.000 

20 1.000  1.000  59.000 

 

Use Statistics > ANOVA/MANOVA > Factorial ANOVA. 
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In very similar manner, you can use Statistics > Advanced linear/nonlinear models > 

General linear models   -  and then ask for Factoria ANOVA there. We will use this 

second option here 

You  will use : Nitrog and Water are categorical predictorst, Height is dependent. After 

All effects you will get: 
 

Univariate Tests of Significance for HEIGHT  (FERT WATE.STA)

Sigma-restricted parameterization

Effective hypothesis decomposition; Std. Error of Estimate: 1.987460

Effect

SS Degr. of

Freedom

MS F p

Intercept

NIT ROG

WAT ER

NIT ROG*WATER

Error

26864.45 1 26864.45 6801.127 0.000000

1140.05 1 1140.05 288.620 0.000000

2101.25 1 2101.25 531.962 0.000000

414.05 1 414.05 104.823 0.000000

63.20 16 3.95  
 

Note, that test of |Intercept is again meaningless 

 

Meaning of interaction: the main effect are not additive; see the picture obtained form All 

effects/graphs after asking for interactions: 
 

NITROG*WATER; LS Means

Current effect: F(1, 16)=104.82, p=.00000

Effective hypothesis decomposition

Vertical bars denote 0.95 confidence intervals
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The lines are not parallel => effects are not additive. It is, however,  a question, whether 

the additivity is a good  null hypothesis. With height, one can think a multiplicativity as a 

good null hypothesis. Try with the log-transformed height. (After the log transformation, 

you test the null hypothesis of multiplicativity on the original (non-transformed) scale. 

You will get 

 

Univariate Tests of Significance for logheight (FERTWAT E.ST A)

Sigma-restricted parameterization

Effective hypothesis decomposition; Std. Error of Estimate: .0311014

Effect

SS Degr. of

Freedom

MS F p

Intercept

NIT ROG

WAT ER

NIT ROG*WATER

Error

47.22477 1 47.22477 48821.23 0.000000

0.13696 1 0.13696 141.59 0.000000

0.28431 1 0.28431 293.92 0.000000

0.02057 1 0.02057 21.26 0.000289

0.01548 16 0.00097  
 

NITROG*WATER; LS Means

Current ef f ect: F(1, 16)=21.263, p=.00029

Ef f ectiv e hy pothesis decomposition

Vertical bars denote 0.95 conf idence interv als
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So, even after the log transformation, the interaction is significant, i.e. the common application of nitrogen 

and water increases height more than would be expected from the additive effect from each of the factors 

(the test with non-transformed values), but even more than would be expected from the multiplicative 

effect of the two factors (the significant interaction of the log-transformed data). 
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Note that log-transformation changes also the distributional characteristics of the variables (would be 

probably good to have a look on residuals disdtribution – in my view better than to perform formal test), 

but the changed semantics is, in my view, the most important matter. 

 

 

Non-replicated BACI (Before After Control Impact) 
 

 

Before: 
 

 

 

                          C                                                                    I 

 

 

 

 

 

 

 

After: 
 

 

 

 

 

 

 

 

                                 C                                                                              I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The response (e.g. content of Cd and Pb in algae, file noBACI.sta) is analyzed by two 

way analysis of variance. Main factors are WHEN (Before and After impact) and 
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WHERE (above [Control plot] and below [Impact plot] the oil spill). The significant 

interaction is (with caution because of pseudoreplication) considered to be a proof of 

impact: 

Data: (file NOBACI.STA) 

   WHERE    WHEN   CD   PB 

1 C B 5.000 4.000 

2 C B 4.000 6.000 

3 C B 6.000 5.000 

4 C B 5.000 3.000 

5 I B 8.000 6.000 

6 I B 9.000 5.000 

7 I B 6.000 7.000 

8 I B 8.000 7.000 

9 C A 6.000 4.000 

10 C A 7.000 7.000 

11 C A 9.000 7.000 

12 C A 8.000 6.000 

13 I A 10.000 11.000 

14 I A 11.000 13.000 

15 I A 9.000 12.000 

16 I A 10.000 14.000 

 

Results: 

Univariate Tests of Significance for CD (NOBACI.STA)

Sigma-restricted parameterization

Effective hypothesis decomposition; Std. Error of Estimate: 1.070436

Effect

SS Degr. of

Freedom

MS F p

Intercept

WHERE

WHEN

WHERE*WHEN

Error

915.0625 1 915.0625 798.6000 0.000000

27.5625 1 27.5625 24.0545 0.000363

22.5625 1 22.5625 19.6909 0.000810

0.0625 1 0.0625 0.0545 0.819271

13.7500 12 1.1458

Cadmiun – the interaction is not significant 

 

Univariate Tests of Significance for PB (NOBACI.STA)

Sigma-restricted parameterization

Effective hypothesis decomposition; Std. Error of Estimate: 1.25

Effect

SS Degr. of

Freedom

MS F p

Intercept

WHERE

WHEN

WHERE*WHEN

Error

855.5625 1 855.5625 547.5600 0.000000

68.0625 1 68.0625 43.5600 0.000025

60.0625 1 60.0625 38.4400 0.000046

22.5625 1 22.5625 14.4400 0.002530

18.7500 12 1.5625

Lead (Pb) – the interaction is significant 
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We have no reason to expect the effect on Cd (interaction is non-significant – 

accordingly, lines in graph are parallel), even when both main effects are significant. On 

the contrary, there is effect on Pb. 

WHERE*WHEN; LS Means

Current ef f ect: F(1, 12)=.05455, p=.81927

Ef f ectiv e hy pothesis decomposition

Vertical bars denote 0.95 conf idence interv als
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WHERE*WHEN; LS Means

Current effect: F(1, 12)=14.440, p=.00253

Effective hypothesis decomposition

Vertical bars denote 0.95 confidence intervals
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Experimental design: 

 

Completely randomized (correct) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Randomized complete blocks (correct): 
 

 

 

   E N V I R O N M E N T A L    G R A D I E N T 

 

 

 

 Block 1   Block 2   Block 3   Block 4 
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Latin square design (correct) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FALSE (Pseudoreplications!!!!) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Randomized complete blocks: (Example 11, file seedlivuska.sta): In an experiment set 

in 4 randomized complete blocks, following treatments were used: control (1), litter 

removal (2), Nardus removal (3) and litter and moss removal (4). The response is number 

of seedling per 0.5m x 0.5m plot (seedlsum). 
 TREATMEN BLOCK SEEDLSUM 

rel1 1 1 95 

rel2 2 1 91 

rel3 3 1 64 

rel4 4 1 107 

rel5 1 2 88 

rel6 2 2 70 

rel7 3 2 51 

rel8 4 2 180 

rel9 1 3 44 

rel10 2 3 57 

rel11 3 3 55 

rel12 4 3 173 

rel13 1 4 94 

rel14 2 4 99 

rel15 3 4 53 

rel16 4 4 80 
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Analyzed by main effect ANOVA, (TREATMENT and BLOCK are main effect, 

interaction term is used as error term – of course, interaction cannot be tested. The same 

result is obtained, when you use in Statistica the factorial design, the interaction will not 

be tested ) 

 

In Statistica: Statistics > Advanced linear/nonlinear models > General linear models, 

select Main effect ANOVA and in Options specify  BLOCK as a random effect factor 

 

 

Univariate Tests of Significance for SEEDLSUM (SEEDLIVUSKA.ST A)

Over-parameterized model

Type III decomposition; Std. Error of Estimate: 32 .69312

Effect

Effect

(F/R)

SS Degr. of

Freedom

MS Den.Syn.

Error df

Den.Syn.

Error MS

F p

Intercept

TREAT MEN

BLOCK

Error

Fixed 122675.1 1 122675.1 3.000000 215.562 569.0928 0.000161

Fixed 13539.7 3 4513.2 9.000000 1068.840 4.2225 0.040278

Random 646.7 3 215.6 9.000000 1068.840 0.2017 0.892645

9619.6 9 1068.8

 

TREATMEN; LS Means

Current ef f ect: F(3, 9)=4.2225, p=.04028

Ty pe III decomposition

Vertical bars denote 0.95 conf idence interv als
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If blocks do not differ among themselves (note that p-value for block is ~0.9), then block 

structure decreases the power of the test. In example above, the completely randomized 

design would yield: 

 
Univariate Tests of Significance for SEEDLSUM (SEEDLIVUSKA.STA)

Sigma-restricted parameterization

Effective hypothesis decomposition

Effect

SS Degr. of

Freedom

MS F p

Intercept

TREAT MEN

Error

122675.1 1 122675.1 143.3923 0.000000

13539.7 3 4513.2 5.2754 0.014964

10266.2 12 855.5

 

  

It is, however, not correct to drop the block only because it is not significant. 

 Another possible data arrangement for randomized complete blocks is in the file 

STOMATA.STA.  

 
 

Example12 (file stomata.sta):  

 

Stomatal densities on leaves, stem and petals were compared. 10 plants were used and for 

each plant, we have one value for leaves, one value for stem and one value for petals: 

 
Plant Leaves  Stem petals 

1 9 6 7 

2 15 9 10 

3 7 3 4 

4 15 10 12 

5 11 7 9 

6 20 15 17 

7 19 18 18 

8 4 3 3 

9 16 11 13 

10 14 10 11 

 

This means, each block (in this case, each plant is a block)  is a ro, each variable 

(column) is one treatment level (in this case, position on a plant, i.e., not real treatment, 

just explanatory variable).  In this case,  specify Statistics > ANOVA > Repeated measure 

ANOVA – you will have three response variables (Leaves, Stem, Petals), and in the 

wizard, specify Within effect is POSITION with three levels – and you will get (All 

effects)  

Repeated Measures Analysis of Variance (STOMAT A.ST A)

Sigma-restricted parameterization

Effective hypothesis decomposition

Effect

SS Degr. of

Freedom

MS F p

Intercept

Error

POSIT ION

Error

3542.533 1 3542.533 48.79025 0.000064

653.467 9 72.607

75.467 2 37.733 46.73394 0.000000

14.533 18 0.807  
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POSITION; LS Means

Current effect: F(2, 18)=46.734, p=.00000

Effective hypothesis decomposition

Vertical bars denote 0.95 confidence intervals
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Note, that in this case, the confidence intervals are calculated without taking into account the block 

structure – so these are correct confidence intervals, but do not take into account, that you have first filtered 

out the variability of individual plants using them as a block. 
Non-parametric counterpart: Friedman test (in Statistics > Nonparametrics/compare 

multiple dependenty samples (variables)  

 

Friedman ANOVA and Kendall Coeff. of Concordance (STOMATA.STA)

ANOVA Chi Sqr. (N = 10, df = 2) = 19.15789 p = .00007

Coeff. of Concordance = .95789 Aver. rank r = .95322

Variable

Average

Rank

Sum of

Ranks

Mean Std.Dev.

LEAVES

ST EM

PETALS

3.000000 30.00000 13.00000 5.163978

1.100000 11.00000 9.20000 4.802777

1.900000 19.00000 10.40000 4.948625  
 

 

Fixed and random effects 
 

Example 13 (file ferlocal.sta): In three meadow localities, 5 control plots and 5 fertilized 

plots were established. The biomass at the end of the season was harvested, oven dried 

and weighted. Following results were obtained: 
 

 

 
LOCALITY 

FERTIL BIOMASS 
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1 0 510 

1 0 520 

1 0 525 

1 0 545 

1 0 500 

1 1 600 

1 1 610 

1 1 620 

1 1 610 

1 1 605 

2 0 400 

2 0 420 

2 0 410 

2 0 405 

2 0 430 

2 1 520 

2 1 570 

2 1 560 

2 1 520 

2 1 550 

3 0 680 

3 0 670 

3 0 650 

3 0 660 

3 0 670 

3 1 670 

3 1 650 

3 1 630 

3 1 645 

3 1 670 

 

Are there differences among localities? Is there any effect of fertilization? Is the 

fertilization effect the same at all the localities? 

 

Use the factorial ANOVA (you need to use the Advanced linear/nonlinear models 

>general linear models, if you select ANOVA only, you are not able to specify the 

random effects|). Compare the results when locality is a fixed effect factor: 
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Univariate Tests of Significance for BIOMASS (FERLOCAL.ST A)

Sigma-restricted parameterization

Effective hypothesis decomposition; Std. Error of Estimate: 15.50537

Effect

SS Degr. of

Freedom

MS F p

Intercept

LOCALIT Y

FERTIL

LOCALIT Y*FERTIL

Error

9661688 1 966168840187.26 0.000000

163940 2 81970 340.95 0.000000

35707 1 35707 148.52 0.000000

27420 2 13710 57.03 0.000000

5770 24 240

 

 

And when locality is a random effect factor: 

 

Univariate Tests of Significance for BIOMASS (FERLOCAL.STA)

Over-parameterized model

Type III decomposition; Std. Error of Estimate: 15.50537

Effect

Effect

(F/R)

SS Degr. of

Freedom

MS Den.Syn.

Error df

Den.Syn.

Error MS

F p

Intercept

LOCALIT Y

FERTIL

LOCALIT Y*FERTIL

Error

Fixed 9661688 1 9661688 2.00000 81970.00 117.8686 0.008378

Random 163940 2 81970 2.00000 13710.00 5.9788 0.143290

Fixed 35708 1 35708 2.00000 13710.00 2.6045 0.247909

Random 27420 2 13710 24.00000 240.42 57.0260 0.000000

5770 24 240

 

 

The results for the fixed factor (i.e. fertile) differ considerably (the results for the other 

two terms should be in my view identical, but are not – I am convinced that in this case, 

Statistica uses a wrong error term for the random effect). But, so as so, we are usually 

most interested in the fixed effect.  There is difference in the meaning: when locality is a 

fixed factor, the results are to be generalized to the three localities only (i.e., on average, 

the fertilization increases biomass on the three localities). When the locality is a random 

factor, then the three localities are random sample from (potentially infinite) set of all 

possible localities; in this case we do not have enough evidence to say anything about the 

fertilization effect in the whole set (except that the effect is not the same in all the 

localities (significant interaction). 
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Hierarchical (nested) designs 

 

Simple hierarchy: Example 14: We study the effect of soil type on seed weight. We have 

four pots with sand and four pots with clay. From each plant, we weighted 3 seeds. The 

design was: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data should be entered as follows (file seedhier.sta): 
 SOIL POT SEEDWEIG 

1 s 1 6 

2 s 1 7 

3 s 1 6 

4 s 2 5 

5 s 2 6 

6 s 2 5 

7 s 3 7 

8 s 3 7 

9 s 3 6 

10 s 4 5 

11 s 4 5 

12 s 4 6 

13 c 5 8 

14 c 5 7 

15 c 5 8 

16 c 6 7 

17 c 6 7 

18 c 6 8 

19 c 7 8 

20 c 7 7 

21 c 7 8 

22 c 8 6 

23 c 8 6 

24 c 8 6 

The analysis of variance has to reflect the hierarchical nature of the design: in particular, 

pot (a random factor) is nested the factor soil. So, use Statistics > Advanced 

SAND CLAY 

Pot1 Pot2 Pot3 Pot4 Pot5 Pot6 Pot7 Pot8 

Soil type 

Pot 

Seed 



 25 

linear/nonlinear models > General linear models and there, select Nested designs – there 

in Between effect specify that Pot is nested in soil (Soil is not nested) and finally, you 

have to state that pot is a factor with random effect (in Options). Ignore the warning. You 

will get: 

Univariate Tests of Significance for SEEDWEIG (SEEDHIER.STA)

Over-parameterized model

Type III decomposition; Std. Error of Estimate: .5400617

Effect

Effect

(F/R)

SS Degr. of

Freedom

MS Den.Syn.

Error df

Den.Syn.

Error MS

F p

Intercept

SOIL

POT(SOIL)

Error

Fixed 1027.042 1 1027.042 6 1.652778 621.4034 0.000000

Fixed 9.375 1 9.375 6 1.652778 5.6723 0.054645

Random 9.917 6 1.653 16 0.291667 5.6667 0.002538

4.667 16 0.292

It follows that (at α=0.05) we were not able to reject the null hypothesis that soil has no 

effect, but there is significant effect of the pot. Note, that for soil we have used as an error 

term MS for pot, not the residual MS. For testing the effect of soil, particular pots are the 

independent observations.  The pots are tested against the residual (i.e. between seed 

within a pot) variability.  

 

If we use (erroneously) the particular seeds as independent observations, we would get 

nicely significant differences between soil type: 

 

Univariate Tests of Significance for SEEDWEIG (SEEDHIER.STA)

Sigma-restricted parameterization

Effective hypothesis decomposition

Effect

SS Degr. of

Freedom

MS F p

Intercept

SOIL

Error

1027.042 1 1027.042 1549.366 0.000000

9.375 1 9.375 14.143 0.001079

14.583 22 0.663  
 

Unfortunately, this is false analysis, and tremendously underestimates the Type I error 

probability. 

 

Split-plot design 
Split-plot is sometimes used also for  the simple hierarchy described above; here we will 

call split-plot the situation where there is a within-plot factor, effect of which is also 

tested. 

Example 15: 

The effect of fertilization was studied on 6 plots, 3 of them on limestone         , and 3 of 

them on granit.          In each field following treatment were established: control ( C ), 

fertilized by Nitrogen (N) and fertilized by Phosphorus (P). The design looked like: 
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        Plot 1                                                  Plot 2                                              Plot 3  

 

 

 

 

 

           Plot 4                                               Plot 5                                   Plot 6 

 

 

 

 

 

 

The response was total biomass in a plot. We are interested in following questions: Is 

there any difference between biomass on granit and limestone (test rock), is there any 

general effect of fertilization (test fertil), and the effect of fertilization the same on granit 

and on limestone (test interaction rock x fertil). Because of the hierarchical structure, we 

are not allowed to use the two-way analysis of variance, but we have to include the plot 

(1 to 6) as another factor, which is nested within rock. 

 

The data should be entered as (file rockfert.sta): 
 ROCK FERTIL PLOT BIOMASS 

1 g C 1 625 

2 g N 1 688 

3 g P 1 645 

4 l C 2 455 

5 l N 2 482 

6 l P 2 520 

7 g C 3 695 

8 g N 3 756 

9 g P 3 740 

10 l C 4 420 

11 l N 4 460 

12 l P 4 499 

13 g C 5 460 

14 g N 5 488 

15 g P 5 456 

16 l C 6 520 

17 l N 6 590 

18 l P 6 650 

 

The independent variables are ROCK, FERTIL and PLOT, dependent is BIOMASS. 

Then (in general linear model (last line) in general linear models) state that you want to 

use as categorical predictors ROCK, FERTIL and PLOT, and in between effect (custom 

design) state that PLOT is nested within ROCK, you are also interested in the ROCK * 

FERTIL interaction, and that PLOT is a random factor (Options). The final results are: 

 

C 

P 

N 

 

N 

P 

C 

C 

N 

P 

N 

C 
P C 

N 

P N 

P 

C 
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Univariate Tests of Significance for BIOMASS (ROCKFERT.ST A)

Over-parameterized model

Type III decomposition; Std. Error of Estimate: 15.76388

Effect

Effect

(F/R)

SS Degr. of

Freedom

MS Den.Syn.

Error df

Den.Syn.

Error MS

F p

Intercept

ROCK

FERTIL

ROCK*FERTIL

PLOT(ROCK)

Error

Fixed 5722345 1 5722345 4 33989.67 168.3554 0.000204

Fixed 50881 1 50881 4 33989.67 1.4969 0.288287

Fixed 10992 2 5496 8 248.50 22.1174 0.000550

Fixed 5421 2 2711 8 248.50 10.9074 0.005184

Random 135959 4 33990 8 248.50 136.7793 0.000000

1988 8 248

 

Note, that for the effect of ROCK (“main plot effect)”, the PLOT MS is used as error in F 

calculation. We can conclude that on average, the biomass do not differ between 

limestone and granit, that the fertilization has a significant effect, and that the effect of 

fertilization is NOT the same on granit and limestone: this can be illustrated by a picture 

(use means/graph and plot interaction ROCK and FERTIL): 

 

ROCK*FERTIL; LS Means

Current ef f ect: F(2, 8)=10.907, p=.00518

Ty pe III decomposition

Vertical bars denote 0.95 conf idence interv als

 ROCK

 g

 ROCK

 l

C N P

FERTIL

400

450

500

550

600

650

700

B
IO

M
A

S
S

 

On limestone, the effect of phosphorus is higher than that of nitrogen, on granit, the 

reverse is true. The confidence intervals are here based on  
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Replicated BACI – Repeated measurement (Example 16) 
T0                   Treatment             T1                                               T2 

 

H0: Growth is the same in control and impact group. 
 

Use repeated measurement ANOVA, most important is the interaction between time and treatment. 

Example above: Control –without nutrient addition, Impact – nutrient addition. 

 

Data are in the form (file repmes1.sta): 

TREAT OBS0 OBS1 OBS2 

c 5 6 7 

i 6 8 10 

c 4 5 5 

i 4 6 9 

i 5 8 11 

c 6 7 8 

i 7 8 11 

c 5 5 6 

i 6 8 10 

c 6 7 8 

Control 

Control 

Control 

Impact 

Impact 

Impact 
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OBS0 – OBS2 are plant heights observed in times 0 to 2. Statistica > ANOVA > 

Repeated measurement ANOVA   OR Statistica > Advanced Linear/nonlinear…> 

General linear models > Repeated measurement ANOVA. In the panel, TREAT is the 

only independent factor, dependent variables are OBS0, OBS1, OBS2. You must specify 

the Within effect –will be something like TIME – factor has 3 levels. 

 

The resulting table is: 

Repeated Measures Analysis of Variance (REPMES1.STA)

Sigma-restricted parameterization

Effective hypothesis decomposition; Std. Error of Estimate: 1.648231

Effect

SS Degr. of

Freedom

MS F p

Intercept

TREAT

Error

TIME

TIME*TREAT

Error

1428.300 1 1428.300 525.7546 0.000000

24.300 1 24.300 8.9448 0.017313

21.733 8 2.717

48.200 2 24.100 125.7391 0.000000

11.400 2 5.700 29.7391 0.000004

3.067 16 0.192  
It tells us that there are differences among treatments (1 - significant TREAT, P<0.05 

only), which shows that the average plant size over time differs between control and 

impact groups, that the plant size changes with time (2 - TIME, of course, plants grow), 

and most important, there is significant interaction between  TIME * TREAT, the 

development of the control and impact groups differ, P<<0.001). The last term, 

interaction is the most important one. It can be shown by a graph: 
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TIME*TREAT; LS Means

Current effect: F(2, 16)=29.739, p=.00000

Effective hypothesis decomposition

Vertical bars denote 0.95 confidence intervals

 TREAT
 c
 TREAT
 i

OBS0 OBS1 OBS2

TIME

3

4

5

6

7

8

9

10

11

12

13

D
V

_
1

 

 

At the beginning, the plants were of roughly same size. With time, the groups start to 

differ and the difference increases with time.  
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Regression 
 

Simple linear regression: 

 

Example 16:Transpiration rate was measured as a response to changing wind velocity. 

Results: 
 

WIND TRANSPI 

2 12 

9 16 

5 14 

6 15 

7 18 

3 11 

4 12 

1 10 

0 8 

 

We can reasonably suppose that wind is independent and transpiration depends on wind. For regression, we 

have to expect that wind is measured without error, whereas transpiration as a response contains some 

random variability (the random variability is supposed to have normal distribution with zero mean).  

 

Compare: correlation (two random variables) vs. regression.  

 

Simple linear regression can be easily obtained from Basic statistics, Correlation matrices: ask for 

detailed table of results and you will get all parameters of regressions (both X on Y, and Y on X), 

correlation coefficient, and coefficient determination (R
2
). 2D scatterplot gives: 

 

Statistica plots confidence band (i.e. where the regression line lies); the other possibility 

is tolerance band (i.e. where the observations are) 

 

Regression
95% confid.

 WIND vs. TRANSPI (Casewise MD deletion)

 TRANSPI = 8.8242 + .98871 * WIND

Correlation: r = .92392

 WIND

 TRAN
SPI

6

8

10

12

14

16

18

20

-1 1 3 5 7 9 11
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Regression diagnostics is available in Multiple regression. 

Transformations: NOTE: by transforming independent variable, you change the shape of 

the dependence only. By changing dependent variable, you change both the shape and 

distribution characteristics. 
 

Example 17: 

 

Population increases in an exponential way (we expect Nt=N0e
rt
). The population size 

increase is described: 

 

 

Time  population size 

 

0 5 

1 7 

2 10 

3 14 

4 19 

5 27 

6 39 

7 50 

 

Estimate r by regression. 

Solution:  

Log (base e) – transform the population size; you will get  

ln(Nt) = ln(N0) + rt. 

Slope of the regression line ln(Nt) on t is the estimate of r. 

 

Log-transformation of population size corresponds well to the expected log-normal 

distribution of population size as a random variable and variability increasing with the 

size.  
 

 

Example 18. We expect the relationship between forest patch size (A) and number of 

vascular species in the patch (S) to be: 

S=c A
z
 

Data on patch size and number of vascular plant species are (file specarea.sta): 

 
AREA 

(ha) 
Number of 

Species 
2 44 

5 60 

8 70 

12 85 

6 57 

17 97 

23 105 

90 129 
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Estimate the parameters (c, z) of the relationship. 

 

Use log-transformation of both the variables. You will get 

Log(S) = log ( c ) + z log(A), which can be calculated by regression.  

   Y      =    a          + b. X 

 

Remember: 

Correlation coefficient: between –1 and +1, does not depend on units of measurement 

(describes how well are the variables correlated and the direction of the relationship) 

 

Coefficient of determination (R
2
): between 0 and +1. Proportion of variability in 

dependent variable explained by independent variable(s). 

Regression coefficients – between - and +, slope of the regression line, depends on the 

units, in which are the variables measured. 

 

Terminology: independent and dependent variable or predictor and response. 

 

More predictors (independent variables) – Multiple regression 

 

Lets extend the example with transpiration: included in the file are variables TEMPER 

(temperature), HUMID (humidity) and SUN (sunshine – yes=1, no=0). As in many real 

cases, the predictors are correlated and probably influence each other. 

 

First, run standard multiple regression with two predictors: WIND and TEMPER: Select 

WIND and TEMPER as independent and TRANSPI as dependent variable. After OK ask 

first for Analysis of Variance. You will get ANOVA of the complete model: 

 
Analysis of Variance; DV: TRANSPI (windtran.sta)  

 Sums of  Mean   

 Squares df Squares F p-level 

Regress. 73.32337 2 36.66168 39.52372 0.000351 

Residual 5.565521 6 0.927587   

Total 78.88889     

 

The p-level corresponds to the null hypothesis, that there is no effect of any of the explanatory variables. 

Then we can ask for Regression summary: 
 

Regression Summary for Dependent Variable: TRANSPI  

R= .96408046 R²= .92945114 Adjusted R²= .90593485   

F(2,6)=39.524 p<.00035 Std.Error of estimate: .96311   

  St. Err.  St. Err.   

 BETA of BETA B of B t(6) p-level 

Intercpt   7.281043 0.836624 8.702885 0.000127 

WIND 0.762415 0.125712 0.815877 0.134527 6.064788 0.000912 

TEMPER 0.319223 0.125712 0.191351 0.075355 2.539328 0.044121 
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Here, we have for intercept and for particular explanatory variables BETA values 

(standardized regression coefficients), B (non-standardized regression coefficients) and 

corresponding t-tests with probability levels. B-values are those from the regression 

equation: 

 

TRANSPI=7.28+ 0.82 WIND + 0.19 TEMP 

 

Note, that the B values depend on units and consequently can not be used to compare the 

importance of particular predictors (the standardized coefficients can be used for this 

purpose). The t-tests test the effect of the corresponding predictor in the presence of all 

the other predictors (it is why they are called partial coefficients). Note that neither B 

nor p-level for WIND are the same as in simple regression.  

As in many real cases, the test for intercept is non-sense: this is the test of null hypothesis 

that the constant (intercet) in the equation is zero, which would mean that there is no 

transpiration at zero temperature and no wind. (Note, that use of linear regression means 

some approximation, which will be probably reasonable one in the range of data, but 

should not be used for extrapolation.) 

 

It might happen, that ANOVA is significant, and none of B values is significant: this 

happens if the predictors are correlated: it tells us that probably each of them separately 

explains significant portion of variability, but we are not able to say, which one is 

important. The predictor is redundant in the presence of the other one. 

It also might happen, that one of the predictors is significant, but the total ANOVA is not. 

This is the case when one good predictor is accompanied by many predictors that do not 

explain anything.  

 

Building model with stepwise linear regression 

Is it better when the computer selects the subset of variables according to some 

algorithm, or should researcher interact during the procedure? 

Danger of statistical fishing! 

 

Do not forget about regression diagnostics (test of assumptions of regression – the 

residuals are expected to be independent of both predictors, and predicted values). 

 

Violation of assumptions: solution: either transformation, or Generalized linear models. 

 

Nonparametric (Rank) correlation coefficients (Spearman). 
 

ANCOVA – Analysis of Covariance 
 

Use of categorical variables – equivalence of regression and anova: general linear 

models.  

ANCOVA is often used, when we have continuous variable, effect of which should be 

filtered out first and then we want to compare groups.  For example: in the previous 

example, we want to test the effect of sunshine on transpiration, but we know that 

transpiration depends also on wind. Use wind as covariate in ANOVA/MANOVA table. 

Comment [L1]: Old Statistica 
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The effect of categorical variable will be obtained by asking for All effects, effect of 

covariate from Within cell regression.  

 

Other (not very botanical) example: 

 

We were interested in the effect of regular beer-drinking (characterized as binary 

variable, yes-1, no – 0) on persons weight. It is reasonable to use the person’s height as 

covariable (file BEER.STA): 
 

Weight Height Drinker 

80 180 0 

60 170 0 

70 165 1 

90 185 0 

95 182 1 

105 185 1 

90 195 0 

111 190 1 

70 180 0 

100 205 0 

 

Go again for General linear models and in the panel, as for Analysis of Covariance. Response is Weight, 

categorical predictor is Drinker, continuous predictor is Height.  

 

All effects gives you\ 

 

Univariate Tests of Significance for WEIGHT  (BEER.ST A)

Sigma-restricted parameterization

Effective hypothesis decomposition; Std. Error of Estimate: 6.026722

Effect

SS Degr. of

Freedom

MS F p

Intercept

HEIGHT

DRINKER

Error

692.028 1 692.028 19.05290 0.003294

1809.834 1 1809.834 49.82832 0.000201

937.110 1 937.110 25.80051 0.001432

254.250 7 36.321  
 

So, the effect of height is significant (we expected this), and effect of drinking also. Note 

that t-test, comparing only drinkers with non-drinkers, is not significant 

 

T-tests; Grouping: DRINKER (BEER.STA)

Group 1: 0

Group 2: 1

Variable

Mean

0

Mean

1

t-value df p Valid N

0

Valid N

1

Std.Dev.

0

Std.Dev.

1

F-ratio

Variances

p

Variances

WEIGHT 81.66667 95.25000 -1.31007 8 0.226537 6 4 14.71960 18.08084 1.508846 0.640411

 

This is because of large unexplained variability in weights, which is due to 

differences in person heights. 
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Recommended reading: 

 
Basic textbooks: 

 

Zar J.H. Biostatistical Analysis.  Prentice-Hall, Englewood Cliffs, NJ. (Second edition 

1984, 3-rd edition 199*) 

 

Sokal, R.R. & Rohlf, F.J. Biometry. Freeman & Comp. San Francico. [second ed. 1981, 

3-rd ed. 1995) 

 

Very useful reading: 

Schneider, S.M. & Gurevitch, J. [eds] 1993. Design and Analysis of Ecological 

Experiments. Chapman & Hall, New York.  

 Hurlbert, S.H. 1984. Pseudoreplication and the design of ecological field experiments. 

Ecol. Monogr. 54: 187-211. 

 

 

For more advanced: 

Mead, R. 1988. The desigh of experiments. Statistical principles for practical application. 

– Cambridge Univ. Press, Cambridge. 

 

Underwood, A.J. 1997. Experiment in Ecology. The logical design and interpretation 

using analysis of variance.  Cambridge Univ. Press. 

Hairston, N.G. 1989. Ecological experiments. Purpose, design, and execution. Cambridge 

Univ. Press, Cambridge. 


