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ABSTRACT 

Lepg, J. and Kindlmann, P., 1987. Models of the development of spatial pattern of an 
even-aged plant population over time. Ecol. Modelling, 39: 45-57. 

The development of spatial patterns of a single even-aged population in a homogeneous 
area was studied by means of simulation and analytical models. The simulation model was 
designed to reflect ecological reality as much as possible, simultaneously keeping a reasonable 
level of simplicity. Results of simulations were supported by analysis of a simplified and more 
mathematically tractable model. It was shown that the main factor causing the decrease of 
aggregation intensity or tendency to regularity in the course of population development is the 
competition among neighbouring individuals. Random patterns may be a result of changes of 
initial aggregated pattern caused by competition among neighbours. Hence, an observed 
random pattern is not evidence for the independence of individuals. 

INTRODUCTION 

Spatial pattern (distribution of individuals in space) is an important 
characteristic of populations of sedentary organisms. The study of changes 
of type and intensity of spatial pattern plays an important role in contem- 
porary quantitative ecology (Greig-Smith, 1979). A number of questions 
connected with this problem remain unanswered, however. 

Kent and Dress (1979, 1980) presented models of development of spatial 
patterns of natural even-aged forest stands over time. Under their modelling 
assumptions they have shown that both random and aggregated spatial 
patterns are preserved over time and a regular (lattice) spatial pattern tends 
to change into a random spatial pattern. These conclusions are given for a 
single generation of trees; no new individuals are permitted to arise during 
the time of development. A homogeneous area is considered. 

There is, however, a lot of field data indicating that even-aged population 
of trees, shrubs and herbs tend to decrease the intensity of aggregation in the 
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course of self-thinning, being initially distributed in clumps (Kershaw, 1963, 
1973; Greig-Smith, 1964, 1979; Williams, et al., 1978) or tend to nearly 
regular distribution (Laessle, 1965; Moore and Bhadresa, 1978; Phillips and 
MacMahon, 1981; Prach, 1981; Tagawa, 1965). For example, Tagawa (1965) 
writes: "The following possibility was pointed out that the trees of overstory 
showed a trend of making regular distribution, when they were of nearly the 
same age and made densely closed canopy.. .  ". Ford (1975) found that 
regular pattern is maintained in uniformly planted trees of Picea sitchensis. 
It is impossible to explain the data of all the above quoted authors using 
models of Kent and Dress (1979, 1980). We suppose that a very important 
factor influencing the formation of spatial pattern of an even-aged popula- 
tion in a homogeneous area during its development is the mortality of 
particular individuals influenced by competitive action of their neighbours 
(cf. Laessle, 1965; Keister, 1972; Whipple, 1980; Symonides, 1983). The 
influence of neighbours is completely omitted from the models of Kent and 
Dress (1979, 1980). We propose simulation and analytical models of the 
spatial pattern development, both of which take into account the influence 
of neighbours. The simulation model was designed to reflect ecological 
reality as much as possible while keeping a reasonable level of simplicity. 
Results of simulations were supported by analysis of a simplified and more 
mathematically tractable model. The objectives of the modelling effort were 
(1) to evaluate the extent to which the spatial pattern formation may be 
affected by competition among neighbours, and (2) to evaluate the possibil- 
ity of spatial pattern intensity as a measure of population organization. 

THE SIMULATION MODEL 

The model is based on the following assumptions: the simulated plot (a 
quadrat) contains a population of n individuals. Each individual is consid- 
ered separately; ith individual (i = 1, 2 . . . . .  n) is described by its height 
(di) and by the radius of the circular plot which it occupies (!-,. = kd i, k = 
constant). The area of this plot is Si = ~rri 2. Each individual 'roots' in a fixed 
point within the plot (coordinates x i, Yi)- 

The growth of each individual is described by a 'logistic-like' equation 
with an added expression of competition from neighbours. The difference 
equation is used with an appropriate time step (in the case of trees usually 1 
year): 

di(t+ 1 ) = d i ( t ) [ l +  a(1 di(t)D ) RED i(t)] (1) 

where a is the length-growth rate and D is the maximum possible height of 
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individual. The term RED i expresses the competitive influence of neighbours 
and is computed in the following manner: 

es , -  E ov~R,j d-j 
di 

j . i  (2) 
REDi QS i = max(0, 

where Q is a parameter expressing the intensity of neighbours' influence on 
growth (the higher the value of Q, the weaker the influence), and OVERij is 
an area of overlap of ith and j t h  individuals (computed as the overlap of 
two circles). The area of overlap is weighted by the ratio of heights of 
influencing and influenced individuals. An individual is more influenced by 
its taller neighbours and less by the lower ones. Similarly, the probability of 
survival to the next point is computed. The survival or death of each 
individual is then decided by the Monte Carlo method, as it is usual in 
similar models (Shugart, 1984). For comparison, the version with constant 
value of survival probability (i.e. independent of neighbours' competition: 
random dying) was executed. 

To avoid a possible edge effect, the simulated plot was considered to be 
bounded by identical plots on each edge. 

At the beginning of simulation, the initial height and location of each 
individual were generated. The initial heights were generated as random 
numbers with normal distribution N(/~, o 2) with given /~ and o. Coordi- 
nates were generated according to the desired type of spatial pattern. The 
regular pattern was represented by the square lattice. Coordinates of individ- 
uals exhibiting random patterns were generated as independent random 
numbers with uniform distribution. 

A flexible generator of aggregated (contagious, clumped) pattern was 
developed. The probability of appearance of an individual was considered to 
vary within the plot. The continuous function of coordinates Z(x, y) was 
constructed for reducing the probability of appearance of an individual. 
Coordinates x and y were then generated as in the case of the random 
pattern; however, the individual was '  accepted' with the probability Z(x,  y), 
i.e. if the additional random number (u ~ (0, 1); uniform distribution) was 
smaller than the value of Z(x, y). Obviously, the character of the spatial 
pattern is determined by the function Z(x, y). In our model it was 
constructed in the following way. First, q random points were generated 
within the plot (coordinates Xi, Y/, i = 1, 2 . . . . .  q). Then: 

Z(.x, y )= ra in  1, E exp[ -- ((x -- Xi) 2-~- ( y -  yi)2)/s21 (3) 
i=1 

The parameters q and s are user-determined and correspond to the number 
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of clusters and their dimension respectively. Examples of different functions 
Z(x, y) and corresponding realizations of spatial pattern are in Fig. 1. This 
method seems to be more convenient for our purposes than a similar method 
of Mat6rn (1971) or methods of Diggle (1979). Moreover, in further simula- 
tion experiments, the use of such a function allows the expression of 
influence of the plot heterogeneity on the processes in a population (i.e. on 
the model parameters). If desired, the function Z(x, y) may be constructed 
to allow the generation of spatial pattern with more than one scale of 
aggregation. 

At the beginning of simulation and then after regular time intervals 
selected characteristics of the population were computed (density, average 
height, characteristics of spatial pattern). As a characteristic of spatial 
pattern, the indices of Clark and Evans (1954) and of Hopkins (1954) were 
used. (For discussion on their use see Pielou, 1977.) 

The index R of Clark and Evans (1954) is defined: 

R = ~  2 fp  (4) 

where ~ is the observed mean distance between neighbouring individuals, 
and p is the density; R = 2 in the case of completely regular (square lattice) 
pattern, R = 1 in the case of random pattern and decreases down to zero 
with increase of aggregation. The index of Hopkins (1954) is defined: 

Eal  
A = - -  ( 5 )  

)'-'a 2 

where a I are squares of a random point-to-plant distance, and a 2 squares of 
a random plant-to-neighbour distance. The same number of measurements 
of each kind is supposed; A > 1 indicates aggregated pattern, A = 1 ran- 
dom, A < 1 some degree of regularity. Characteristics of spatial pattern were 
computed also separately for individuals taller and shorter than average. 

It should be noted that there are different nieasures of spatial pattern 
intensity behaving differently under self-thinning conditions. For measures 
based on counts of individuals in quadrats, the behaviour of characteristics 
of a population subjected to random dying was derived analytically (e.g. 
Pielou, 1977). For distance methods this seems to be impossible (in a general 
case). However, even among them are differences in behaviour. Conse- 
quently, under certain conditions, different measures may characterize 
changes in the course of self-thinning even contradictorily. Hence, it is 
necessary to relate conclusions on the changes of spatial pattern to the index 
used. 

The model was executed for initial aggregated random and regular 
patterns with the probability of dying both with and without dependence on 
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Fig. 2. Development of the simulated plots with initial aggregated (left), random (middle) and regular pattern (fight). The particular runs 
differ in the type of initial pattern only. In each case, the state of the plot in times 0 (above left), 5 (above right), 10 (below left) and 20 
(below right) is shown. 
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Fig. 3. Changes of the R statistics over time in simulated populations with initial aggregated 
( . . . . . .  ), random ( ) and regular ( . . . . .  ) spatial pattern. Corresponds to plots in Fig. 
2. 

neighbours. In the case of random dying, both the R and A value approach 
(remain) 1 regardless of the initial type of pattern. In the case of dependence 
on neighbours, the R value increases with time, except in the case of initial 
lattice pattern. These conclusions hold for a wide range of types of initial 
aggregated pattern. Typical cases are shown in Fig. 2, corresponding courses 
of R values in Fig. 3. The changes of A values correspond to those of R 
values. Note that starting with aggregated pattern, the R value reaches the 
values indicating random pattern after some time. 

Considering other characteristics of population development, we found 
differences in the rate of self-thinning among particular cases (most rapid in 
the case of aggregated pattern, see Fig. 4). Considering taller and lower 
individuals separately, the taller ones were usually spaced more evenly than 
the lower ones. 

This model was used to simulate the development of natural birch (Betula 
pendula Roth.) growths on clear cuttings. The model was calibrated using 
data of S. Vacek (Forestry Research Institute, VOLHM, OpoEno, 
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Fig. 4. Changes of density (p) over time in simulated populations with initial aggregated 
( . . . . . .  ), random ( ) and regular ( . . . . .  ) spatial pattern. 

Czechoslovakia, unpublished data, 1980) from East Bohemia (three plots of  
different age 8, 22 and 38 years). Data  on growth and thinning only were 
used in the course of calibration; changes of spatial pat tern of simulated and 
field population were compared afterwards. The comparison of the be- 
haviour  of simulated and field populations is displayed in Fig. 5. 

ANALYTICAL MODEL 

Let there be n living individuals in the beginning of the self-thinning 
procedure in an area of size A. Each of them 'roots '  on a fixed point  and 
occupies a circle with the centre in this point and radius growing with time 
to a fixed constant K. The growth rate of the radius and the constant  K is 
the same for all individuals. If the areas occupied by two different individu- 
als begin to overlap, one of them becomes extinct. (If this occurs among 
more individuals in the same instant, the order of dying is decided at 
random.) Then the self-thinning procedure may be divided into steps in each 
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Fig. 5. Comparsion of bebaviour of field (above) and simulated (below) birch population.  - -  
index of Hopkins (A), - . . . . .  the mean height of populat ion (d) ,  • . . . .  density of 
individuals (p).  

of which one individuals is excluded, this being one of the pair of individuals 
which has minimal distance, v~(m), among the m remaining individuals 
(m ~<n). The procedure is stopped if o~(m)>1 2K. As a measure of 
aggregation of the m individuals we shall take the statistics of Clark and 
Evans (see equation 4): 

R(m)= 2~(m) p~-(--~ (6) 



54 

where p(m) is the popula t ion  density, and: 
m 

~(m)=--I E v,(m) 
m 

i = 1  

in which vi(m ) is the distance of 
where m individuals are present. 

We shall show that the following implicat ion holds: 

m - ~rn(m - 1) > Vmi~(m)/~(m ) ~ R(m - 1) > R(m) 

Proof: Simple book-keeping shows that  for m > 1 the 
implicat ion (7) is equivalent to: 

2v(m)V~A <2mv(m)-Vmin(m)  ~ / m -  I A 

Moreover, it is easy to see that: 
m - 1  

E v i ( m -  1) 
~ ( m - 1 ) =  i = l m  1 >~ mv(m)-Vmi~(m) 

- m - 1  

i th individual  to its nearest  ne ighbour  

(7) 

lef t -hand side of 

(8) 

(9) 

(13) 

The cumulative distr ibution funct ion of the distance 
neighbour  in the case of a r andom pat tern  is: 

F ( v )  = 1 - exp( - kv  2 ) 

Substi tut ion of (9) in inequality (8) gives the r ight-hand side of implicat ion 
(7), which completes the proof.  

For  a purely regular pattern,  Vmi~(m)/~(m)= 1. If m > 1, then m 
-~/m(m- 1 ) <  1. Hence, in the case of a regular pa t te rn  R(m) must  
decrease at least in the first step. When  the pat tern  goes f rom a regular to an 
aggregative one, the value of Vmi~(m)/~(m ) decreases, which implies that  
the statistic R(m) becomes more  likely to increase. Let us now give a rough 
estimate of what  happens  if the pat tern  is random.  

It is reasonable to consider that  m is not  too small. For  m > 4 we obtain:  

~m 2 + ~/m(m- 1) 
m 2 -- m 2 + m > 2v/m > ~ + f m - -  1 = ~ (10) 

Division of equat ion (10) by m + ~/m(m - 1) yields: 

1 
m - ~ m ( m -  1) > ~-m (11) 

which gives us (together with implicat ion (7)) the following implication:  

l l f -m  >1 v•(m)/?;(m) -- R(m - 1) > R(m) (12) 

v to the nearest  
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where k = k(m, A) denotes the mean number of individuals per circle of 
unit radius (Pielou, 1977). The mean of v is: 

e(v)= 

The distribution function of the random variable Vmi~ 
then: 

G(vnr~)= I - ( 1 -  F(v)) r" 

From equations (13) and (15) we obtain: 

1 i ¢ r  (16) E(Vmm) = mk 

Let us now consider a pattern in which ~(m) = E(v) (equation 14), Cn~n(m) 
----E(Cmm) (equation 16). From (12) it follows that R(m) increases in that 
case (at least in the first step). This indicates that R(m) tends to increase if 
the pattern is random. 

(14) 

---= m i n i = l ,  2 . . . . .  mVi is 

(15) 

D I S C U S S I O N  

The importance of spatial processes for dynamics of populations and 
communities of sedentary organisms was emphasized many times (e.g. 
Czgr/m, 1984; Yodzis, 1978). Similarly, we found differences in the course of 
self-thinning among cases with different initial spatial pattern. 

Changes in the spatial pattern of even-aged population of sedentary 
organisms are due to mortality of individuals. It depends, particularly in 
densely closed canopy, on the competition of neighbours. The growth of 
individuals under strong competition stress is suppressed first and then these 
individuals die in the undercanopy position. Comparing the patterns of 
canopy (dominant) and undercanopy (suppressed) individuals, the canopy 
ones are usually spaced more evenly (cf. Ford and Diggle, 1981; Malik et al., 
1976). It is in accordance with the results of our simulation. The competition 
among neighbouring individuals seems to be the crucial factor, influencing 
the development of the spatial pattern of a single, even-aged population. Its 
omission (as in Kent and Dress, 1979, 1980) in models causes their inability 
to explain some real phenomena. 

The random pattern may be observed as a result of changes of the initial 
aggregated pattern caused by competition among neighbours; hence it is 
incorrect to deduce the independence of individuals within population from 
the observed random pattern. Hence, intensity of spatial pattern should 
never be taken as a measure of community organization, as its use has been 
attempted (e.g. by Kershaw, 1973, pp. 57-64). 
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We have considered a single even-aged population in a homogeneous 
area. This case is, however, not very common in the field. Are there any 
features of spatial pattern development that can be used to explain the 
behaviour of real populations? It should be noted that nearly all phenomena 
which we have omitted may be considered to be the causes of aggregation; a 
small heterogeneity of plot may have an important  influence on survival of 
plants, particularly of seedlings; new individuals appear almost always in 
groups (e.g. vegetatively dispersed plants, young trees in 'gaps' in canopy, cf. 
Shugart, 1984). Catastrophic events often cause aggregated pattern (cf. 
Sprugel, 1976). The interspecific competit ion often has a similar influence 
(e.g. if one of the species exhibits aggregated pattern, it is highly probable 
that there is aggregated pattern also in its competitors). Seeds in soil are 
often distributed contiguously (Greig-Smith, 1979; Laessle, 1965). If we 
consider all the above-mentioned factors, it is obvious that the initial pattern 
is almost always aggregated. Further development depends on the propor- 
tion of the influence of the above-mentioned factors and the influence of 
competition among neighbours. The influence of the above-mentioned fac- 
tors often decreases with the age of individuals (e.g. seedlings are more 
sensitive to external factors than mature plants) and the remaining factor 
which determines mortality is competition among neighbours. Hence, the 
decrease of intensity of aggregation is often observed (Cooper, 1961; 
Kershaw, 1963, 1973, pp. 59-64; Laessle, 1965; Tagawa, 1965; Anderson, 
1971; Greig-Smith, 1979; Phillips and MacMahon, 1981; Prach, 1981) in an 
even-aged population. In the uneven-aged population it was found that 
mature plants exhibit a low tendency of aggregation (or are distributed 
randomly or even evenly), although in seedlings and immature plants high 
intensity of aggregation was found (Malik et al., 1976; Christensen, 1977; 
Whipple, 1980). 
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